Immunological evaluation of young unvaccinated patients with Turner syndrome after COVID-19

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Autores
CASTRO, Mateus V. de
SILVA, Monize V. R.
NASLAVSKY, Michel S.
SCLIAR, Marilia O.
MAGALHAES, Monize L.
ROCHA, Katia M. da
CASTELLI, Erick C.
Citação
INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, v.129, p.207-215, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objectives: The X-chromosome contains the largest number of immune-related genes, which play a major role in COVID-19 symptomatology and susceptibility. Here, we had a unique opportunity to investigate, for the first time, COVID-19 outcomes in six unvaccinated young Brazilian patients with Turner syndrome (TS; 45, X0), including one case of critical illness in a child aged 10 years, to evaluate their immune response according to their genetic profile. Methods: A serological analysis of humoral immune response against SARS-CoV-2, phenotypic character-ization of antiviral responses in peripheral blood mononuclear cells after stimuli, and the production of cytotoxic cytokines of T lymphocytes and natural killer cells were performed in blood samples collected from the patients with TS during the convalescence period. Whole exome sequencing was also performed.Results: Our volunteers with TS showed a delayed or insufficient humoral immune response to SARS-CoV-2 (particularly immunoglobulin G) and a decrease in interferon-gamma production by cluster of differentiation (CD)4 + and CD8 + T lymphocytes after stimulation with toll-like receptors 7/8 agonists. In contrast, we observed a higher cytotoxic activity in the volunteers with TS than the volunteers without TS after phor-bol myristate acetate/ionomycin stimulation, particularly granzyme B and perforin by CD8 + and natural killer cells. Interestingly, two volunteers with TS carry rare genetic variants in genes that regulate type I and III interferon immunity.Conclusion: Following previous reports in the literature for other conditions, our data showed that pa-tients with TS may have an impaired immune response against SARS-CoV-2. Furthermore, other medical conditions associated with TS could make them more vulnerable to COVID-19.(c) 2023 The Author(s).
Palavras-chave
COVID-19, Turner syndrome, SARS-CoV-2, X-chromosome
Referências
  1. Asano T, 2021, SCI IMMUNOL, V6, DOI 10.1126/sciimmunol.abl4348
  2. Bianchi I, 2012, J AUTOIMMUN, V38, pJ187, DOI 10.1016/j.jaut.2011.11.012
  3. Breithaupt-Faloppa AC, 2020, CLINICS, V75, DOI 10.6061/clinics/2020/e1980
  4. CACCIARI E, 1981, J IMMUNOGENET, V8, P337
  5. Carvalho AB, 2010, REV ASSOC MED BRAS, V56, P655, DOI 10.1590/S0104-42302010000600012
  6. Casrouge A, 2006, SCIENCE, V314, P308, DOI 10.1126/science.1128346
  7. Castelli EC, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.742881
  8. de Castro MV, 2022, OPEN BIOL, V12, DOI 10.1098/rsob.210240
  9. De Sanctis Vincenzo, 2019, Acta Biomed, V90, P341, DOI 10.23750/abm.v90i3.8737
  10. Duysburgh E, 2021, LANCET INFECT DIS, V21, P163, DOI 10.1016/S1473-3099(20)30943-9
  11. Fedor I, 2022, J ENDOCR SOC, V6, DOI 10.1210/jendso/bvac124
  12. Foresta C, 2021, J ENDOCRINOL INVEST, V44, P951, DOI 10.1007/s40618-020-01383-6
  13. Gawlik AM, 2018, FRONT ENDOCRINOL, V9, DOI 10.3389/fendo.2018.00307
  14. Hadjadj J, 2020, SCIENCE, V369, P718, DOI 10.1126/science.abc6027
  15. JENSEN K, 1976, HUM GENET, V31, P329, DOI 10.1007/BF00270862
  16. Shankar RK, 2021, HORM RES PAEDIAT, V93, P415, DOI 10.1159/000512904
  17. Klein SL, 2016, NAT REV IMMUNOL, V16, P626, DOI 10.1038/nri.2016.90
  18. Lamers MM, 2022, NAT REV MICROBIOL, V20, P270, DOI 10.1038/s41579-022-00713-0
  19. Li YC, 2020, CRIT CARE, V24, DOI 10.1186/s13054-020-03118-8
  20. Lofstrom E, 2021, J CLIN VIROL, V144, DOI 10.1016/j.jcv.2021.104986
  21. Long QX, 2020, NAT MED, V26, P845, DOI 10.1038/s41591-020-0897-1
  22. Ma Y, 2021, IMMUN INFLAMM DIS, V9, P1186, DOI 10.1002/iid3.500
  23. Naslavsky MS, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-28648-3
  24. Ruby J, 1997, J EXP MED, V186, P1591, DOI 10.1084/jem.186.9.1591
  25. Sarmiento L, 2019, SCAND J IMMUNOL, V90, DOI 10.1111/sji.12776
  26. Saulle I, 2021, HUM IMMUNOL, V82, P551, DOI 10.1016/j.humimm.2021.05.003
  27. Schurz H, 2019, HUM GENOMICS, V13, DOI 10.1186/s40246-018-0185-z
  28. Secolin R, 2021, HUM GENOME VAR, V8, DOI 10.1038/s41439-021-00146-w
  29. Shankar Kikkeri N, 2022, TURNER SYNDROME
  30. Siddiqui RA, 2009, AM J HUM GENET, V85, P228, DOI 10.1016/j.ajhg.2009.07.013
  31. Silva Monize V R, 2022, Discov Ment Health, V2, P1, DOI 10.1007/s44192-022-00004-3
  32. Smith N, 2022, NAT COMMUN, V13, DOI 10.1038/s41467-022-34895-1
  33. Spiering AE, 2021, FRONT IMMUNOL, V12, DOI 10.3389/fimmu.2021.756262
  34. Stenberg Annika E, 2004, J Negat Results Biomed, V3, P6, DOI 10.1186/1477-5751-3-6
  35. Thrasher BJ, 2016, CURR ALLERGY ASTHM R, V16, DOI 10.1007/s11882-016-0612-y
  36. Viveiros A, 2021, AM J PHYSIOL-HEART C, V320, pH296, DOI 10.1152/ajpheart.00755.2020
  37. Wang YA, 2021, INT IMMUNOPHARMACOL, V90, DOI 10.1016/j.intimp.2020.107271
  38. Yuki K, 2020, CLIN IMMUNOL, V215, DOI 10.1016/j.clim.2020.108427
  39. Zatz M, 2022, MOL PSYCHIATR, V27, P1936, DOI 10.1038/s41380-022-01461-6
  40. Zhang Q, 2022, NATURE, V603, P587, DOI 10.1038/s41586-022-04447-0
  41. Zhang Q, 2020, SCIENCE, V370, DOI 10.1126/science.abd4570