Bovine-associated staphylococci and mammaliicocci trigger T-lymphocyte proliferative response and cytokine production differently

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Autores
SOUZA, Fernando N.
SANTOS, Kamila R.
FERRONATTO, Jose A.
TOLEDO-SILVA, Bruno
HEINEMANN, Marcos B.
VLIEGHER, Sarne De
LIBERA, Alice M. M. P. Della
Citação
JOURNAL OF DAIRY SCIENCE, v.106, n.4, p.2772-2783, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
We examined whether distinct staphylococcal and mammaliicoccal species and strains trigger B-and T-lymphocyte proliferation and interleukin (IL)-17A and interferon (IFN)-gamma production by peripheral blood mononuclear cells in nulliparous, primiparous, and multiparous dairy cows. Flow cytometry was used to measure lymphocyte proliferation with the Ki67 anti-body, and specific monoclonal antibodies were used to identify CD3, CD4, and CD8 T lymphocyte and CD21 B lymphocyte populations. The supernatant of the peripheral blood mononuclear cell culture was used to measure IL-17A and IFN-gamma production. Two distinct, inactivated strains of bovine-associated Staphylococcus aureus [one causing a persistent intramammary infec-tion (IMI) and the other from the nose], 2 inactivated Staphylococcus chromogenes strains [one causing an IMI and the other from a teat apex), as well as an inactivated Mammaliicoccus fleurettii strain originat-ing from sawdust from a dairy farm, and the mitogens concanavalin A and phytohemagglutinin M-form (both specifically to measure lymphocyte proliferation) were studied. In contrast to the ""commensal"" Staph. aureus strain originating from the nose, the Staph. aureus strain causing a persistent IMI triggered proliferation of CD4+ and CD8+ subpopulations of T lymphocytes. The M. fleurettii strain and the 2 Staph. chromogenes strains had no effect on T-or B-cell proliferation. Fur-thermore, both Staph. aureus and Staph. chromogenes strains causing persistent IMI significantly increased IL-17A and IFN-gamma production by peripheral blood mononuclear cells. Overall, multiparous cows tended to have a higher B-lymphocyte and a lower T-lymphocyte proliferative response than primiparous and nulliparous cows. Peripheral blood mononuclear cells of multipa-rous cows also produced significantly more IL-17A and IFN-gamma. In contrast to concanavalin A, phytohemagglu-tinin M-form selectively stimulated T-cell proliferation.
Palavras-chave
mastitis, Staphylococcus aureus, non-aureus staphylococci, Mammaliicoccus, lymphocyte proliferation
Referências
  1. Alekseeva L, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0063279
  2. Beuckelaere L, 2021, VET RES, V52, DOI 10.1186/s13567-021-01007-8
  3. Breyne K, 2015, J DAIRY SCI, V98, P1090, DOI 10.3168/jds.2014-8699
  4. Cunha AF, 2020, J DAIRY SCI, V103, P4588, DOI 10.3168/jds.2019-17084
  5. De Buck J, 2021, FRONT VET SCI, V8, DOI 10.3389/fvets.2021.658031
  6. De Visscher A, 2016, J DAIRY SCI, V99, P1427, DOI 10.3168/jds.2015-10326
  7. De Visscher A, 2014, VET MICROBIOL, V172, P466, DOI 10.1016/j.vetmic.2014.06.011
  8. De Vliegher S, 2012, J DAIRY SCI, V95, P1025, DOI 10.3168/jds.2010-4074
  9. De Vliegher S, 2004, VET MICROBIOL, V101, P215, DOI 10.1016/j.vetmic.2004.03.020
  10. Desforges JPW, 2016, ENVIRON INT, V86, P126, DOI 10.1016/j.envint.2015.10.007
  11. Dowling MR, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.02461
  12. Erskine RJ, 2011, AM J VET RES, V72, P1059, DOI 10.2460/ajvr.72.8.1059
  13. Ezzat Alnakip Mohamed, 2014, J Vet Med, V2014, P659801, DOI 10.1155/2014/659801
  14. Huebner R, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0243688
  15. Isaac P, 2017, VET MICROBIOL, V207, P259, DOI 10.1016/j.vetmic.2017.05.025
  16. KANELLOPOULOS JM, 1985, EUR J IMMUNOL, V15, P479, DOI 10.1002/eji.1830150512
  17. Lastovicka J, 2016, HUM IMMUNOL, V77, P1215, DOI 10.1016/j.humimm.2016.08.012
  18. Leuenberger A, 2019, J DAIRY SCI, V102, P3295, DOI 10.3168/jds.2018-15181
  19. Littman DR, 2011, CELL HOST MICROBE, V10, P311, DOI 10.1016/j.chom.2011.10.004
  20. Lunjani N, 2021, GENES IMMUN, V22, P276, DOI 10.1038/s41435-021-00133-9
  21. Madhaiyan M, 2020, INT J SYST EVOL MICR, V70, P5926, DOI 10.1099/ijsem.0.004498
  22. Mehrzad J, 2009, VET MICROBIOL, V134, P106, DOI 10.1016/j.vetmic.2008.09.001
  23. Mehrzad J, 2008, J DAIRY RES, V75, P457, DOI 10.1017/S0022029908003439
  24. Murphy MP, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-42424-2
  25. Niedziela DA, 2021, BMC GENOMICS, V22, DOI 10.1186/s12864-021-08135-7
  26. Farias MVN, 2018, VET IMMUNOL IMMUNOP, V206, P41, DOI 10.1016/j.vetimm.2018.10.012
  27. Ohtsuka H, 2010, CAN J VET RES, V74, P130
  28. PALACIOS R, 1982, J IMMUNOL, V128, P337
  29. Parlet CP, 2019, TRENDS MICROBIOL, V27, P497, DOI 10.1016/j.tim.2019.01.008
  30. Pereyra EAL, 2017, VET MICROBIOL, V204, P64, DOI 10.1016/j.vetmic.2017.04.009
  31. Piccart K, 2016, VET RES, V47, DOI 10.1186/s13567-016-0338-9
  32. Piepers S, 2010, J DAIRY SCI, V93, P2014, DOI 10.3168/jds.2009-2897
  33. Piessens V, 2012, VET MICROBIOL, V155, P62, DOI 10.1016/j.vetmic.2011.08.005
  34. Piessens V, 2011, J DAIRY SCI, V94, P2933, DOI 10.3168/jds.2010-3956
  35. Porcellato D, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-77054-6
  36. Rainard P, 2018, TRANSBOUND EMERG DIS, V65, P149, DOI 10.1111/tbed.12698
  37. Rainard P, 2020, VET RES, V51, DOI 10.1186/s13567-020-00852-3
  38. Santos KR, 2021, VACCINES-BASEL, V9, DOI [10.3390/vaccines9080899, 10.3390/vaccines9080899/]
  39. Santos RP, 2020, ANIMALS-BASEL, V10, DOI 10.3390/ani10112143
  40. Soares A, 2010, J IMMUNOL METHODS, V362, P43, DOI 10.1016/j.jim.2010.08.007
  41. Souza FN, 2016, J DAIRY SCI, V99, P2867, DOI 10.3168/jds.2015-10230
  42. Souza F. N., 2022, VET RES, DOI 10.5281
  43. Souza RM, 2022, J DAIRY SCI, V105, P1625, DOI 10.3168/jds.2021-20953
  44. Srinivasan N, 2010, INNATE IMMUN-LONDON, V16, P391, DOI 10.1177/1753425909357577
  45. Supre K, 2011, J DAIRY SCI, V94, P2329, DOI 10.3168/jds.2010-3741
  46. Tebartz C, 2015, J IMMUNOL, V194, P1100, DOI 10.4049/jimmunol.1400196
  47. Toledo-Silva B, 2022, PATHOGENS, V11, DOI 10.3390/pathogens11020264
  48. Toledo-Silva B, 2021, VET RES, V52, DOI 10.1186/s13567-021-00985-z
  49. Toledo-Silva B, 2021, VET RES, V52, DOI 10.1186/s13567-021-00933-x
  50. Tomazi T, 2015, J DAIRY SCI, V98, P3071, DOI 10.3168/jds.2014-8466
  51. Valckenier D, 2020, J DAIRY SCI, V103, P768, DOI 10.3168/jds.2019-16818
  52. Vanderhaeghen W, 2014, J DAIRY SCI, V97, P5275, DOI 10.3168/jds.2013-7775
  53. Vangroenweghe F, 2004, J DAIRY SCI, V87, P886, DOI 10.3168/jds.S0022-0302(04)73233-6
  54. VanWerven T, 1997, J DAIRY SCI, V80, P67, DOI 10.3168/jds.S0022-0302(97)75913-7
  55. WEISS A, 1987, J IMMUNOL, V138, P2169
  56. Wuytack A, 2019, J DAIRY SCI, V102, P9345, DOI 10.3168/jds.2019-16662
  57. Zielinski CE, 2012, NATURE, V484, P514, DOI 10.1038/nature10957