A Cloth Facemask Causes No Major Respiratory or Cardiovascular Perturbations During Moderate to Heavy Exercise

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
HUMAN KINETICS PUBL INC
Autores
GUARDIEIRO, Natalia Mendes
BARRETO, Gabriel
MARTICORENA, Felipe Miguel
OLIVEIRA, Tamires Nunes
OLIVEIRA, Luana Farias de
PINTO, Ana Lucia de Sa
PRADO, Danilo Marcelo Leite do
SAUNDERS, Bryan
GUALANO, Bruno
Citação
JOURNAL OF PHYSICAL ACTIVITY & HEALTH, v.20, n.1, p.35-44, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose: Investigate whether a cloth facemask could affect physiological and perceptual responses to exercise at distinct exercise intensities in untrained individuals. Methods: Healthy participants (n = 35; 17 men, age 30 [4] y, and 18 women, age 28 [5] y) underwent a progressive square wave test at 4 intensities: (1) 80% of ventilatory anaerobic threshold; (2) ventilatory anaerobic threshold; (3) respiratory compensation point; and (4) exercise peak (Peak) to exhaustion, 5-minute stages, with or without a triple-layered cloth facemask (Mask or No-Mask). Several physiological and perceptual measures were analyzed. Results: Mask reduced inspiratory capacity at all exercise intensities (P < .0001). Mask reduced respiratory frequency (P = .001) at Peak (-8.3 breaths-min-1; 95% confidence interval [CI], -5.8 to -10.8), respiratory compensation point (-6.9 breaths-min-1; 95% CI, - 4.6 to -9.2), and ventilatory anaerobic threshold (-6.5 breaths-min-1; 95% CI, -4.1 to -8.8), but not at Baseline or 80% of ventilatory anaerobic threshold. Mask reduced tidal volume (P < .0001) only at respiratory compensation point (-0.5 L; 95% CI, - 0.3 to -0.6) and Peak (-0.8 L; 95% CI, -0.6 to -0.9). Shallow breathing index was increased with Mask only at Peak (11.3; 95% CI, 7.5 to 15.1). Mask did not change HR, lactate, ratings of perceived exertion, blood pressure, or oxygen saturation. Conclusions: A cloth facemask reduced time to exhaustion but had no major impact on cardiorespiratory parameters and had a slight but clinically meaningless impact on respiratory variables at higher intensities. Moderate to heavy activity is safe and tolerable for healthy individuals while wearing a cloth facemask. ClinicalTrials.gov: NCT04887714.
Palavras-chave
mask, COVID-19 pandemic, oxygen saturation, lactate
Referências
  1. [Anonymous], 2001, B WORLD HEALTH ORGAN, V79, P373, DOI 10.1001/jama.2013.281053
  2. Atkinson G, 1996, SPORTS MED, V21, P292, DOI 10.2165/00007256-199621040-00005
  3. BORG GAV, 1982, MED SCI SPORT EXER, V14, P377, DOI 10.1249/00005768-198205000-00012
  4. Burgess A, 2012, SOCIOL HEALTH ILL, V34, P1184, DOI 10.1111/j.1467-9566.2012.01466.x
  5. Burnley M, 2007, EUR J SPORT SCI, V7, P63, DOI 10.1080/17461390701456148
  6. Centers for Disease Control and Prevention, 2022, US CAR MASKS
  7. Chandrasekaran B, 2020, MED HYPOTHESES, V144, DOI 10.1016/j.mehy.2020.110002
  8. Christou S, 2021, J APPL PHYSIOL, V130, P678, DOI 10.1152/japplphysiol.00144.2020
  9. Clase CM, 2020, ANN INTERN MED, V173, P489, DOI 10.7326/M20-2567
  10. COYLE EF, 1988, J APPL PHYSIOL, V64, P2622, DOI 10.1152/jappl.1988.64.6.2622
  11. Dominelli PB, 2018, J APPL PHYSIOL, V125, P960, DOI 10.1152/japplphysiol.00440.2018
  12. Driver S, 2022, BRIT J SPORT MED, V56, P107, DOI 10.1136/bjsports-2020-103758
  13. Duke JW, 2017, SEX HORMONES EXERCIS, P19
  14. Epstein D, 2021, SCAND J MED SCI SPOR, V31, P70, DOI 10.1111/sms.13832
  15. Fikenzer S, 2020, CLIN RES CARDIOL, V109, P1522, DOI 10.1007/s00392-020-01704-y
  16. Fiuza-Luces C, 2013, PHYSIOLOGY, V28, P330, DOI 10.1152/physiol.00019.2013
  17. FREEDSON P, 1979, MED SCI SPORT EXER, V11, P16
  18. Fukushi I, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0258104
  19. Gebel K, 2015, JAMA INTERN MED, V175, P970, DOI 10.1001/jamainternmed.2015.0541
  20. Graham BL, 2019, AM J RESP CRIT CARE, V200, pE70, DOI 10.1164/rccm.201908-1590ST
  21. Groves LM, 2021, MMWR-MORBID MORTAL W, V70, P316, DOI [10.15585/mmwr.mm7009e1, 10.15585/mmwr.mm7009]
  22. Gualano B, 2022, BRAIN BEHAV IMMUN, V101, P49, DOI 10.1016/j.bbi.2021.12.016
  23. Guenette JA, 2013, PULM MED, V2013, DOI 10.1155/2013/956081
  24. Hagstromer M, 2006, PUBLIC HEALTH NUTR, V9, P755, DOI 10.1079/PHN2005898
  25. HOWLEY ET, 1995, MED SCI SPORT EXER, V27, P1292
  26. Hupin D, 2015, BRIT J SPORT MED, V49, DOI 10.1136/bjsports-2014-094306
  27. Kouzy R, 2020, CUREUS J MED SCIENCE, V12, DOI 10.7759/cureus.7255
  28. Lavie CJ, 2019, CIRC RES, V124, P799, DOI 10.1161/CIRCRESAHA.118.312669
  29. Leung NHL, 2020, NAT MED, V26, P676, DOI 10.1038/s41591-020-0843-2
  30. LEWIS DA, 1986, SPORTS MED, V3, P357, DOI 10.2165/00007256-198603050-00005
  31. Li Y, 2005, INT ARCH OCC ENV HEA, V78, P501, DOI 10.1007/s00420-004-0584-4
  32. McKay AKA, 2022, INT J SPORT PHYSIOL, V17, P317, DOI 10.1123/ijspp.2021-0451
  33. McNulty KL, 2020, SPORTS MED, V50, P1813, DOI 10.1007/s40279-020-01319-3
  34. MEAD J, 1980, AM REV RESPIR DIS, V121, P339
  35. Mok A, 2019, BMJ-BRIT MED J, V365, DOI 10.1136/bmj.l2323
  36. Neder JA, 1999, BRAZ J MED BIOL RES, V32, P719, DOI 10.1590/S0100-879X1999000600007
  37. Roozenbeek J, 2020, ROY SOC OPEN SCI, V7, DOI 10.1098/rsos.201199
  38. Shaw K, 2020, INT J ENV RES PUB HE, V17, DOI 10.3390/ijerph17218110
  39. Shaw KA, 2021, APPL PHYSIOL NUTR ME, V46, P693, DOI 10.1139/apnm-2021-0143
  40. Sheel AW, 2009, J APPL PHYSIOL, V107, P1622, DOI 10.1152/japplphysiol.00562.2009
  41. Stephenson Joan, 2021, JAMA Health Forum, V2, pe210207, DOI 10.1001/jamahealthforum.2021.0207
  42. WASSERMAN K, 1973, J APPL PHYSIOL, V35, P236, DOI 10.1152/jappl.1973.35.2.236
  43. Whipp BJ, 2005, MED SCI SPORT EXER, V37, P1574, DOI 10.1249/01.mss.0000177476.63356.22