The Immunological Landscape of M1 and M2 Macrophages and Their Spatial Distribution in Patients with Malignant Pleural Mesothelioma

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Citação
CANCERS, v.15, n.21, article ID 5116, 23p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Simple Summary Identifying biomarkers to guide immunotherapy regimens remains an unmet clinical need in malignant pleural mesothelioma. A potential source of such markers is tumor-associated macrophages (TAMs), which contribute to the immunosuppressive microenvironment of mesothelioma. By examining distinct subsets of pleural macrophages to identify their gene signatures and protein expression, we found that TAMs preferentially contribute to M2a and M2b phenotypes, and M2a, M2b, and M2c more specifically contributed to immune tolerance. CD206, ARG1, CD274, CD163, and MRP8-14 are potential therapeutic targets in this disease.Abstract Background: Several tumor-associated macrophages (TAMs) have shown promise as prognosticators in cancer. Our aim was to validate the importance of TAMs in malignant pleural mesothelioma (MPM) using a two-stage design. Methods: We explored The Cancer Genome Atlas (TCGA-MESO) to select immune-relevant macrophage genes in MPM, including M1/M2 markers, as a discovery cohort. This computational cohort was used to create a multiplex immunofluorescence panel. Moreover, a cohort of 68 samples of MPM in paraffin blocks was used to validate the macrophage phenotypes and the co-localization and spatial distribution of these immune cells within the TME and the stromal or tumor compartments. Results: The discovery cohort revealed six immune-relevant macrophage genes (CD68, CD86, CD163, CD206, ARG1, CD274), and complementary genes were differentially expressed by M1 and M2 phenotypes with distinct roles in the tumor microenvironment and were associated with the prognosis. In addition, immune-suppressed MPMs with increased enrichment of CD68, CD86, and CD163 genes and high densities of M2 macrophages expressing CD163 and CD206 proteins were associated with worse overall survival (OS). Interestingly, below-median distances from malignant cells to specific M2a and M2c macrophages were associated with worse OS, suggesting an M2 macrophage-driven suppressive component in these tumors. Conclusions: The interactions between TAMs in situ and, particularly, CD206+ macrophages are highly relevant to patient outcomes. High-resolution technology is important for identifying the roles of macrophage populations in tissue specimens and identifying potential therapeutic candidates in MPM.
Palavras-chave
malignant pleural mesothelioma, transcriptoma, multiplex immunofluorescence, prognosis, in silico analysis
Referências
  1. Arlauckas SP, 2018, THERANOSTICS, V8, P5842, DOI 10.7150/thno.26888
  2. Arora S, 2018, IMMUNOBIOLOGY, V223, P383, DOI 10.1016/j.imbio.2017.11.001
  3. Blyth KG, 2018, RESP MED, V134, P31, DOI 10.1016/j.rmed.2017.11.015
  4. Broaddus VC, 1996, J CLIN INVEST, V98, P2050, DOI 10.1172/JCI119010
  5. Carbone M, 2017, ANN TRANSL MED, V5, DOI 10.21037/atm.2017.04.29
  6. Cassetta L, 2019, CANCER CELL, V35, P588, DOI 10.1016/j.ccell.2019.02.009
  7. Cassetta L, 2018, NAT REV DRUG DISCOV, V17, P887, DOI 10.1038/nrd.2018.169
  8. Cerami E, 2012, CANCER DISCOV, V2, P401, DOI 10.1158/2159-8290.CD-12-0095
  9. Chandrashekar DS, 2017, NEOPLASIA, V19, P649, DOI 10.1016/j.neo.2017.05.002
  10. Chandrashekar DS, 2022, NEOPLASIA, V25, P18, DOI 10.1016/j.neo.2022.01.001
  11. Chanput W, 2014, INT IMMUNOPHARMACOL, V23, P37, DOI 10.1016/j.intimp.2014.08.002
  12. Chen YB, 2019, J BIOMED SCI, V26, DOI 10.1186/s12929-019-0568-z
  13. Chéné AL, 2016, J THORAC ONCOL, V11, P1765, DOI 10.1016/j.jtho.2016.06.022
  14. Chevrier S, 2017, CELL, V169, P736, DOI 10.1016/j.cell.2017.04.016
  15. Chistiakov DA, 2017, LAB INVEST, V97, P4, DOI 10.1038/labinvest.2016.116
  16. Creaney J, 2022, GENOME MED, V14, DOI 10.1186/s13073-022-01060-8
  17. de Gooijer CJ, 2018, TRANSL LUNG CANCER R, V7, P574, DOI 10.21037/tlcr.2018.04.10
  18. Egeblad M, 2008, DIS MODEL MECH, V1, P155, DOI 10.1242/dmm.000596
  19. Fujimura T, 2018, FRONT ONCOL, V8, DOI 10.3389/fonc.2018.00003
  20. Fujimura T, 2015, J INVEST DERMATOL, V135, P2884, DOI 10.1038/jid.2015.209
  21. Gao JJ, 2013, SCI SIGNAL, V6, DOI 10.1126/scisignal.2004088
  22. Gaudino G, 2020, TRANSL LUNG CANCER R, V9, pS39, DOI 10.21037/tlcr.2020.02.01
  23. Goudar Ranjit K, 2008, Ther Clin Risk Manag, V4, P205
  24. Hagemann T, 2008, J EXP MED, V205, P1261, DOI 10.1084/jem.20080108
  25. Helm O, 2014, ONCOIMMUNOLOGY, V3, DOI 10.4161/21624011.2014.946818
  26. Huang YK, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-11788-4
  27. Hussell T, 2014, NAT REV IMMUNOL, V14, P81, DOI 10.1038/nri3600
  28. Jablonski KA, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0145342
  29. Jayasingam SD, 2020, FRONT ONCOL, V9, DOI 10.3389/fonc.2019.01512
  30. Kakizaki A, 2015, ONCOIMMUNOLOGY, V4, DOI 10.1080/2162402X.2015.1047584
  31. Kambayashi Y, 2015, J INVEST DERMATOL, V135, P2547, DOI 10.1038/jid.2015.199
  32. Kiss M, 2018, CELL IMMUNOL, V330, P188, DOI 10.1016/j.cellimm.2018.02.008
  33. Kou Y, 2022, SCAND J IMMUNOL, V95, DOI 10.1111/sji.13137
  34. Landrigan PJ, 2016, ANN GLOB HEALTH, V82, P214, DOI 10.1016/j.aogh.2016.01.017
  35. Ley K, 2017, J IMMUNOL, V199, P2191, DOI 10.4049/jimmunol.1701135
  36. Li CX, 2021, J IMMUNOTHER CANCER, V9, DOI 10.1136/jitc-2020-001341
  37. Lievense LA, 2016, J THORAC ONCOL, V11, P1755, DOI 10.1016/j.jtho.2016.06.021
  38. Lurier EB, 2017, IMMUNOBIOLOGY, V222, P847, DOI 10.1016/j.imbio.2017.02.006
  39. Ma RY, 2020, J EXP MED, V217, DOI 10.1084/jem.20191820
  40. Mairinger F, 2013, J THORAC ONCOL, V8, pE80, DOI 10.1097/JTO.0b013e31829b1cf9
  41. Mantovani A, 2017, NAT REV CLIN ONCOL, V14, P399, DOI 10.1038/nrclinonc.2016.217
  42. Martinez-Marin D, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0174968
  43. Modak M, 2022, JCI INSIGHT, V7, DOI 10.1172/jci.insight.155022
  44. Molina A.M., 2023, Biomed. J. Sci. Tech. Res, V48, P39103
  45. Noy R, 2014, IMMUNITY, V41, P49, DOI 10.1016/j.immuni.2014.06.010
  46. Osmanbeyoglu HU, 2022, CANCERS, V14, DOI 10.3390/cancers14225626
  47. Parra ER, 2021, FRONT MOL BIOSCI, V8, DOI 10.3389/fmolb.2021.668340
  48. Parra ER, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-88156-0
  49. Parra ER, 2020, CANCERS, V12, DOI 10.3390/cancers12020255
  50. Pathria P, 2019, TRENDS IMMUNOL, V40, P310, DOI 10.1016/j.it.2019.02.003
  51. Pettersen JS, 2011, J INVEST DERMATOL, V131, P1322, DOI [10.1038/jid.2011.9, 10.103/jid.2011.9]
  52. Pulford E, 2017, DIS MARKERS, V2017, DOI 10.1155/2017/1310478
  53. Qian Y, 2017, ACS NANO, V11, P9536, DOI 10.1021/acsnano.7b05465
  54. Quatromoni JG, 2012, AM J TRANSL RES, V4, P376
  55. Rauch Isabella, 2013, JAKSTAT, V2, pe23820, DOI 10.4161/jkst.23820
  56. Rodriguez-Garcia A, 2021, NAT COMMUN, V12, DOI 10.1038/s41467-021-20893-2
  57. Snel B, 2000, NUCLEIC ACIDS RES, V28, P3442, DOI 10.1093/nar/28.18.3442
  58. Suzuki K, 2022, CELL DEATH DISCOV, V8, DOI 10.1038/s41420-022-01232-w
  59. Szklarczyk D, 2021, NUCLEIC ACIDS RES, V49, P10800, DOI 10.1093/nar/gkab835
  60. Takahashi K, 2016, ANN GLOB HEALTH, V82, P209, DOI 10.1016/j.aogh.2016.01.019
  61. Tomek S, 2004, LUNG CANCER, V45, pS103, DOI 10.1016/j.lungcan.2004.04.020
  62. Van Overmeire E, 2014, FRONT IMMUNOL, V5, P1, DOI 10.3389/fimmu.2014.00127
  63. van Steenwijk PJD, 2013, INT J CANCER, V133, P2884, DOI 10.1002/ijc.28309
  64. Wu LC, 2023, P NATL ACAD SCI USA, V120, DOI 10.1073/pnas.2210836120
  65. Wu XS, 2014, J INVEST DERMATOL, V134, P2814, DOI 10.1038/jid.2014.206
  66. Wynn TA, 2013, NATURE, V496, P445, DOI 10.1038/nature12034
  67. Xue JM, 2020, P NATL ACAD SCI USA, V117, P25543, DOI 10.1073/pnas.2007622117
  68. Yang HN, 2006, P NATL ACAD SCI USA, V103, P10397, DOI 10.1073/pnas.0604008103
  69. Zhang QW, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0050946
  70. Zhou YY, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-09234-6
  71. Zolondick Alicia A, 2021, Precis Cancer Med, V4, DOI 10.21037/pcm-21-12