Detection of coinfection with Primate Erythroparvovirus 1 and arboviruses (DENV, CHIKV and ZIKV) in individuals with acute febrile illness in the state of Rio Grande do Norte in 2016

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
PUBLIC LIBRARY SCIENCE
Autores
SANTANA, Lidia Maria Reis
BEZERRA, Joao Felipe
CRUZ, Flavia Emmanuelle
SOUZA, Themis Rocha de
TAHMASEBI, Roozbeh
RAPOSO, Rafael Augusto Alves
HEFFORD, Philip Michael
Citação
PLOS NEGLECTED TROPICAL DISEASES, v.17, n.11, article ID e0011701, 14p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
BackgroundArthropod-borne viruses, known as arboviruses, pose substantial risks to global public health. Dengue (DENV), Chikungunya (CHIKV) and Zika (ZIKV) viruses stand out as significant concerns in Brazil and worldwide. Their overlapping clinical manifestations make accurate diagnosis a challenge, underscoring the need for reliable laboratory support. This study employs a comprehensive molecular diagnostic approach to track viral infections in individuals with acute febrile illness, a period marked by widespread outbreaks of DENV, CHIKV and ZIKV.MethodsBetween January and August 2016, we received a total of 713 serum samples obtained from individuals with acute febrile illness, previously tested for DENV, CHIKV or ZIKV, with initial negative results, from LACEN-NATAL. Of the total 713 samples, 667 were from females (354 of them pregnant) and 46 from males. Molecular diagnosis was conducted using the Multiplex RT-qPCR technique for simultaneous detection of DENV, CHIKV and ZIKV. Additionally, we performed differential diagnosis by RT-qPCR for other viruses of the Flavivirus, Alphavirus Enterovirus genera and qPCR for Primate Erythroparvovirus 1 (B19V) species, in accordance with Ministry of Health guidelines.ResultsAmong the 713 cases, 78.2% tested positive for viral infections, including 48% with CHIKV viremia, 0.6% with DENV and 0.1% with ZIKV. Arboviral coinfections totaled 2.4%, including DENV-CHIKV (1.7%) and CHIKV-ZIKV (0.7%). Moreover, 8% exhibited B19V viremia. Simultaneous infections were identified in 17.5%, encompassing B19V-CHIKV (17.1%), B19V-DENV (0.1%), and B19V-ZIKV (0.3%) Triple infections were observed in 1.3% of cases with B19V-DENV-CHIKV (1%) and B19V-CHIKV-ZIKV (0.3%).ConclusionMolecular testing demonstrated high efficacy in diagnosing prevalent arboviruses and detecting multiple coinfections. This approach helps to elucidate etiologies for symptomatic cases, especially during arbovirus outbreaks, and aids comprehensive surveillance. Our findings underscore the importance of monitoring co-circulating pathogens, such as B19V, with implications for clinical management, particularly in pregnant individuals. This study enhances our understanding of arbovirus epidemiology and reinforces the critical role of molecular diagnosis in disease surveillance and control.
Palavras-chave
Referências
  1. ANDERSON MJ, 1984, J HYG-CAMBRIDGE, V93, P85, DOI 10.1017/S0022172400060964
  2. [Anonymous], 2020, Buurtmonitor Gent
  3. de Brito CAA, 2016, REV SOC BRAS MED TRO, V49, P537, DOI 10.1590/0037-8682-0328-2016
  4. Attwood LO, 2020, PRENATAL DIAG, V40, P1722, DOI 10.1002/pd.5819
  5. Bascietto F, 2018, ULTRASOUND OBST GYN, V52, P569, DOI 10.1002/uog.19092
  6. Brasil, 2020, Secretaria de Vigilancia em Saude. Boletim Epidemiologico. Ed. Atual-Brasilia
  7. Centers for Disease Control and Prevention (CDC), 2019, Diagnostic testing
  8. Centers for Disease Control (CDC), 1989, MMWR Morb Mortal Wkly Rep, V38, P81
  9. de Oliveira SA, 2002, MEM I OSWALDO CRUZ, V97, P965, DOI 10.1590/S0074-02762002000700007
  10. DEFREITAS RB, 1990, J MED VIROL, V32, P203, DOI 10.1002/jmv.1890320402
  11. Di Paola N, 2019, CLIN INFECT DIS, V68, P810, DOI 10.1093/cid/ciy630
  12. GIDEON Informatics I., 2017, Parvovirus B19: global status
  13. Giry C, 2017, BMC MICROBIOL, V17, DOI 10.1186/s12866-017-1080-9
  14. Governo do Estado do Rio Grande do Norte, 2021, Boletim Epidemiologico-Atualizacao da Situacao Epidemiologica das Arboviroses no Rio Grande do Norte
  15. GREENWALD P, 1964, AM J DIS CHILD, V107, P30, DOI 10.1001/archpedi.1964.02080060032005
  16. Hoebe CJPA, 2002, J CLIN VIROL, V25, P303, DOI 10.1016/S1386-6532(02)00021-5
  17. Hymas WC, 2008, CLIN CHEM, V54, P406, DOI 10.1373/clinchem.2007.095414
  18. Jia JT, 2017, MOL CELL PROBE, V36, P50, DOI 10.1016/j.mcp.2017.08.005
  19. Lamont RF, 2011, BJOG-INT J OBSTET GY, V118, P175, DOI 10.1111/j.1471-0528.2010.02749.x
  20. Ministerio da Saude, 2007, Sistema de Informacao de Agravos de Notificacao-Sinan: normas e rotinas, V[2. ed
  21. Oiwa H, 2011, MOD RHEUMATOL, V21, P24, DOI 10.1007/s10165-010-0338-y
  22. Ornoy A, 2017, BIRTH DEFECTS RES, V109, P311, DOI 10.1002/bdra.23588
  23. Patel P, 2013, VIROL J, V10, DOI 10.1186/1743-422X-10-58
  24. PLUMMER FA, 1985, NEW ENGL J MED, V313, P74, DOI 10.1056/NEJM198507113130203
  25. Practice bulletin no, 2015, Obstet Gynecol, V125, P1510
  26. R Core Team, 2019, R: A language and environment for statistical computing
  27. Romano CM, 2013, PLOS ONE, V8, DOI 10.1371/journal.pone.0070318
  28. Romano CM, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0011811
  29. Silva MMO, 2019, CLIN INFECT DIS, V69, P1353, DOI 10.1093/cid/ciy1083
  30. Slavov SN, 2016, INDIAN J HEMATOL BLO, V32, pS323, DOI 10.1007/s12288-015-0607-1
  31. Villabona-Arenas CJ, 2016, PEERJ, V4, DOI 10.7717/peerj.1892
  32. Waggoner JJ, 2016, CLIN INFECT DIS, V63, P1584, DOI 10.1093/cid/ciw589
  33. Waring G J, 2018, Case Rep Womens Health, V18, pe00057, DOI 10.1016/j.crwh.2018.e00057
  34. Wickham H., 2016, ggplot2: Elegant Graphics for Data Analysis (R package version 3.3.5 ed.), DOI 10.1007/978-3-319-24277-4
  35. Wickham Hadley, 2023, CRAN
  36. World Health Organization (WHO), 2019, Information on arboviruses in the region of the Americas
  37. Xiong YQ, 2019, J CLIN VIROL, V114, P12, DOI 10.1016/j.jcv.2019.03.004
  38. Zaidi MB, 2020, ACTA TROP, V201, DOI 10.1016/j.actatropica.2019.105201