Patterns of regional gray matter loss at different stages of schizophrenia: A multisite, cross-sectional VBM study in first-episode and chronic illness

Carregando...
Imagem de Miniatura
Citações na Scopus
94
Tipo de produção
article
Data de publicação
2016
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Citação
NEUROIMAGE-CLINICAL, v.12, p.1-15, 2016
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Structural brain abnormalities in schizophrenia have been repeatedly demonstrated in magnetic resonance imaging (MRI) studies, but it remains unclear whether these are static or progressive in nature. While longitudinalMRI studies have been traditionally used to assess the issue of progression of brain abnormalities in schizophrenia, information from cross-sectional neuroimaging studies directly comparing first-episode and chronic schizophrenia patients to healthy controls may also be useful to further clarify this issue. With the recent interest in multisite mega-analyses combining structural MRI data from multiple centers aiming at increased statistical power, the present multisite voxel-basedmorphometry (VBM) studywas carried out to examine patterns of brain structural changes according to the different stages of illness and to ascertainwhich (if any) of such structural abnormalities would be specifically correlated to potential clinical moderators, including cumulative exposure to antipsychotics, age of onset, illness duration and overall illness severity. Methods: Wegathered a large sample of schizophrenia patients (161, being 99 chronic and 62 first-episode) and controls (151) fromfour previousmorphometricMRI studies (1.5 T) carried out in the same geographical region of Brazil. Image processing and analyses were conducted using Statistical Parametric Mapping (SPM8) software with the diffeomorphic anatomical registration through exponentiated Lie algebra (DARTEL) algorithm. Group effects on regional gray matter (GM) volumes were investigated through whole-brain voxel-wise comparisons using General LinearModel Analysis of Co-variance (ANCOVA), always including total GMvolume, scan protocol, age and gender as nuisance variables. Finally, correlation analyseswere performed between the aforementioned clinical moderators and regional and global brain volumes. Results: First-episode schizophrenia subjects displayed subtle volumetric deficits relative to controls in a circumscribed brain regional network identified only in small volume-corrected (SVC) analyses (p < 0.05, FWE-corrected), including the insula, temporolimbic structures and striatum. Chronic schizophrenia patients, on the other hand, demonstrated an extensive pattern of regional GM volume decreases relative to controls, involving bilateral superior, inferior and orbital frontal cortices, right middle frontal cortex, bilateral anterior cingulate cortices, bilateral insulae and right superior and middle temporal cortices (p < 0.05, FWE-corrected over the whole brain). GM volumes in several of those brain regionswere directly correlated with age of disease onset on SVC analyses for conjoined (first-episode and chronic) schizophrenia groups. There were also widespread foci of significant negative correlation between duration of illness and relative GM volumes, but such findings remained significant only for the right dorsolateral prefrontal cortex after accounting for the influence of age of disease onset. Finally, significant negative correlations were detected between life-time cumulative exposure to antipsychotics and total GM and white matter volumes in schizophrenia patients, but no significant relationship was found between indices of antipsychotic usage and relative GM volume in any specific brain region. Conclusion: The above data indicate that brain changes associated with the diagnosis of schizophrenia are more widespread in chronic schizophrenia compared to first-episode patients. Our findings also suggest that relative GM volume deficits may be greater in (presumably more severe) cases with earlier age of onset, as well as varying as a function of illness duration in specific frontal brain regions. Finally, our results highlight the potentially complex effects of the continued use of antipsychotic drugs on structural brain abnormalities in schizophrenia, as we found that cumulative doses of antipsychotics affected brain volumes globally rather than selectively on frontal-temporal regions. (C) 2016 The Authors.
Palavras-chave
Voxel-based morphometry, MRI, Schizophrenia
Referências
  1. Andreasen NC, 2010, BIOL PSYCHIAT, V67, P255, DOI 10.1016/j.biopsych.2009.08.040
  2. Ansell EB, 2012, BIOL PSYCHIAT, V72, P57, DOI 10.1016/j.biopsych.2011.11.022
  3. Antonova E, 2005, BIOL PSYCHIAT, V58, P457, DOI 10.1016/j.biopsych.2005.04.036
  4. Arnone D, 2009, BRIT J PSYCHIAT, V195, P194, DOI 10.1192/bjp.bp.108.059717
  5. Ashburner J, 2005, NEUROIMAGE, V26, P839, DOI 10.1016/j.neuroimage.2005.02.018
  6. Ashburner J, 2007, NEUROIMAGE, V38, P95, DOI 10.1016/j.neuroimage.2007.07.007
  7. Bassitt DP, 2007, EUR ARCH PSY CLIN N, V257, P58, DOI 10.1007/s00406-006-0685-z
  8. Benedetti F, 2010, GENES BRAIN BEHAV, V9, P365, DOI 10.1111/j.1601-183X.2010.00566.x
  9. Bergouignan L, 2009, NEUROIMAGE, V45, P29, DOI 10.1016/j.neuroimage.2008.11.006
  10. Bernstein MA, 2006, J MAGN RESON IMAGING, V24, P735, DOI 10.1002/jmri.20698
  11. Bora E, 2011, SCHIZOPHR RES, V127, P46, DOI 10.1016/j.schres.2010.12.020
  12. Borgwardt SJ, 2009, SCHIZOPHR RES, V112, P32, DOI 10.1016/j.schres.2009.04.025
  13. Callaert DV, 2014, FRONT AGING NEUROSCI, V6, DOI 10.3389/fnagi.2014.00124
  14. Chan RCK, 2011, SCHIZOPHRENIA BULL, V37, P177, DOI 10.1093/schbul/sbp073
  15. Chua SE, 2007, SCHIZOPHR RES, V89, P12, DOI 10.1016/j.schres.2006.09.009
  16. Clemmensen L, 2012, BMC PSYCHIATRY, V12, DOI 10.1186/1471-244X-12-150
  17. Cobia DJ, 2012, SCHIZOPHR RES, V139, P1, DOI 10.1016/j.schres.2012.05.002
  18. de Souza Crippa Jose Alexandre, 2006, Eur Psychiatry, V21, P291
  19. de Wit SJ, 2014, AM J PSYCHIAT, V171, P340, DOI 10.1176/appi.ajp.2013.13040574
  20. DeLisi LE, 2008, SCHIZOPHRENIA BULL, V34, P312, DOI 10.1093/schbul/sbm164
  21. Dorph-Petersen KA, 2005, NEUROPSYCHOPHARMACOL, V30, P1649, DOI 10.1038/sj.npp.1300710
  22. Ellison-Wright I, 2008, AM J PSYCHIAT, V165, P1015, DOI 10.1176/appi.ajp.2008.07101562
  23. Falkai P, 1999, NEUROPATH APPL NEURO, V25, P48
  24. First MB, 1996, STRUCTURED CLIN INTE
  25. Fusar-Poli P, 2013, NEUROSCI BIOBEHAV R, V37, P1680, DOI 10.1016/j.neubiorev.2013.06.001
  26. Fusar-Poli P, 2011, NEUROSCI BIOBEHAV R, V35, P1175, DOI 10.1016/j.neubiorev.2010.12.005
  27. Fusar-Poli P, 2012, SCHIZOPHRENIA BULL, V38, P1297, DOI 10.1093/schbul/sbr134
  28. Garcia-Marti G, 2008, PROG NEURO-PSYCHOPH, V32, P72, DOI 10.1016/j.pnpbp.2007.07.014
  29. Guo J. Y., 2015, SCHIZOPHR RES
  30. Gupta C. N., 2014, SCHIZOPHR B
  31. HAFNER H, 1995, EUR ARCH PSY CLIN N, V245, P80, DOI 10.1007/BF02190734
  32. Henley SMD, 2010, AM J NEURORADIOL, V31, P711, DOI 10.3174/ajnr.A1939
  33. Ho AJ, 2010, HUM BRAIN MAPP, V31, P499, DOI 10.1002/hbm.20882
  34. Ho BC, 2011, ARCH GEN PSYCHIAT, V68, P128, DOI 10.1001/archgenpsychiatry.2010.199
  35. Honea R, 2005, AM J PSYCHIAT, V162, P2233, DOI 10.1176/appi.ajp.162.12.2233
  36. Honea RA, 2008, BIOL PSYCHIAT, V63, P465, DOI 10.1016/j.biopsych.2007.05.027
  37. Janssen J, 2008, J AM ACAD CHILD PSY, V47, P1311, DOI 10.1097/CHI.0b013e318184ff48
  38. Jednorog K, 2015, HUM BRAIN MAPP, V36, P1741, DOI 10.1002/hbm.22734
  39. Job DE, 2002, NEUROIMAGE, V17, P880, DOI 10.1006/nimg.2002.1180
  40. Jones PB, 1998, AM J PSYCHIAT, V155, P355
  41. KAY SR, 1987, SCHIZOPHRENIA BULL, V13, P261
  42. KESHAVAN MS, 1992, SCHIZOPHRENIA BULL, V18, P491
  43. Keshavan MS, 1998, J PSYCHIAT RES, V32, P161, DOI 10.1016/S0022-3956(97)00038-1
  44. Kirkbride JB, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0031660
  45. Konopaske GT, 2008, BIOL PSYCHIAT, V63, P759, DOI 10.1016/j.biopsych.2007.08.018
  46. Konopaske GT, 2007, NEUROPSYCHOPHARMACOL, V32, P1216, DOI 10.1038/sj.npp.1301233
  47. Kuhn S, 2013, SCHIZOPHRENIA BULL, V39, P358, DOI 10.1093/schbul/sbr151
  48. Lieberman JA, 1997, NEUROPSYCHOPHARMACOL, V17, P205, DOI 10.1016/S0893-133X(97)00045-6
  49. Lui S, 2009, AM J PSYCHIAT, V166, P196, DOI 10.1176/appi.ajp.2008.08020183
  50. Malone IB, 2015, NEUROIMAGE, V104, P366, DOI 10.1016/j.neuroimage.2014.09.034
  51. Marchewka A, 2014, HUM BRAIN MAPP, V35, P1865, DOI 10.1002/hbm.22297
  52. Meda SA, 2008, SCHIZOPHR RES, V101, P95, DOI 10.1016/j.schres.2008.02.007
  53. Meisenzahl EM, 2008, SCHIZOPHR RES, V104, P44, DOI 10.1016/j.schres.2008.06.023
  54. Menezes PR, 2007, BRIT J PSYCHIAT, V191, pS102, DOI 10.1192/bjp.191.51.s102
  55. Moncrieff J, 2010, PSYCHOL MED, V40, P1409, DOI 10.1017/S0033291709992297
  56. Moorhead TWJ, 2004, NEUROIMAGE, V22, P188, DOI 10.1016/j.neuroimage.2003.12.012
  57. Mueller SG, 2005, NEUROIMAG CLIN N AM, V15, P869, DOI 10.1016/j.nic.2005.09.008
  58. MURRAY RM, 1994, BRIT J PSYCHIAT, V165, P6
  59. Navari S, 2009, PSYCHOL MED, V39, P1763, DOI 10.1017/S0033291709005315
  60. Nordenskjold R, 2013, NEUROIMAGE, V83, P355, DOI 10.1016/j.neuroimage.2013.06.068
  61. Olabi B, 2011, BIOL PSYCHIAT, V70, P88, DOI 10.1016/j.biopsych.2011.01.032
  62. Palaniyappan L., 2014, BRAIN STRUCT FUNCT
  63. Pantelis C, 2005, SCHIZOPHRENIA BULL, V31, P672, DOI 10.1093/schbul/sbi034
  64. Pardoe H, 2008, NEUROIMAGE, V42, P611, DOI 10.1016/j.neuroimage.2008.05.007
  65. Peelle JE, 2012, NEUROIMAGE, V60, P1503, DOI 10.1016/j.neuroimage.2011.12.086
  66. Radua J, 2014, NEUROIMAGE, V86, P81, DOI 10.1016/j.neuroimage.2013.07.084
  67. Rosa PGP, 2015, PSYCHOL MED, V45, P817, DOI 10.1017/S0033291714001895
  68. Sallet PC, 2003, AM J PSYCHIAT, V160, P1606, DOI 10.1176/appi.ajp.160.9.1606
  69. Schaufelberger MS, 2011, PSYCHOL MED, V41, P1677, DOI 10.1017/S0033291710002163
  70. Schaufelberger MS, 2007, BRIT J PSYCHIAT, V191, pS117, DOI 10.1192/bjp.191.51.s117
  71. Segall JM, 2009, SCHIZOPHRENIA BULL, V35, P82, DOI 10.1093/schbul/sbn150
  72. Shen S, 2013, J MAGN RESON IMAGING, V37, P1468, DOI 10.1002/jmri.23927
  73. Shenton ME, 2001, SCHIZOPHR RES, V49, P1, DOI 10.1016/S0920-9964(01)00163-3
  74. Sled JG, 1998, IEEE T MED IMAGING, V17, P87, DOI 10.1109/42.668698
  75. Smieskova R, 2012, PSYCHOL MED, V42, P1613, DOI 10.1017/S0033291711002716
  76. Smieskova R, 2010, NEUROSCI BIOBEHAV R, V34, P1207, DOI 10.1016/j.neubiorev.2010.01.016
  77. Smieskova R, 2009, CURR PHARM DESIGN, V15, P2535
  78. Steen RG, 2006, BRIT J PSYCHIAT, V188, P510, DOI 10.1192/bjp.188.6.510
  79. Stonnington CM, 2008, NEUROIMAGE, V39, P1180, DOI 10.1016/j.neuroimage.2007.09.066
  80. Sundram F, 2010, BRIT J PSYCHIAT, V197, P482, DOI 10.1192/bjp.bp.110.080218
  81. Tahmasebi AM, 2009, NEUROIMAGE, V47, P1522, DOI 10.1016/j.neuroimage.2009.05.047
  82. Tardif CL, 2010, HUM BRAIN MAPP, V31, P943, DOI 10.1002/hbm.20908
  83. Torres US, 2013, BMC PSYCHIATRY, V13, DOI 10.1186/1471-244X-13-342
  84. Tregellas JR, 2007, SCHIZOPHR RES, V97, P242, DOI 10.1016/j.schres.2007.08.019
  85. Turner JA, 2012, TWIN RES HUM GENET, V15, P324, DOI 10.1017/thg.2012.1
  86. Uwatoko T, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0142018
  87. van Haren NEM, 2008, EUR PSYCHIAT, V23, P245, DOI 10.1016/j.eurpsy.2007.10.013
  88. van Haren NEM, 2011, ARCH GEN PSYCHIAT, V68, P871, DOI 10.1001/archgenpsychiatry.2011.88
  89. Veijola J, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0101689
  90. Vita A, 2012, TRANSL PSYCHIAT, V2, DOI 10.1038/tp.2012.116
  91. Vita A, 2015, BIOL PSYCHIAT, V78, P403, DOI 10.1016/j.biopsych.2015.02.008
  92. WEINBERGER DR, 1987, ARCH GEN PSYCHIAT, V44, P660
  93. Weinberger DR, 2002, ARCH GEN PSYCHIAT, V59, P553, DOI 10.1001/archpsyc.59.6.553
  94. Weinberger D. R., 2015, AM J PSYCHIAT
  95. White T, 2008, SCHIZOPHRENIA BULL, V34, P18, DOI 10.1093/schbul/sbm110
  96. Whitworth AB, 2005, PSYCHIAT RES-NEUROIM, V140, P225, DOI 10.1016/j.pscychresns.2005.07.006
  97. Wright IC, 2000, AM J PSYCHIAT, V157, P16
  98. Wylie KP, 2010, SCHIZOPHR RES, V123, P93, DOI 10.1016/j.schres.2010.08.027
  99. Zipursky RB, 2013, SCHIZOPHRENIA BULL, V39, P1363, DOI 10.1093/schbul/sbs135