Evaluation of Vitek MS for Differentiation of Cryptococcus neoformans and Cryptococcus gattii Genotypes

Carregando...
Imagem de Miniatura
Citações na Scopus
12
Tipo de produção
article
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
AMER SOC MICROBIOLOGY
Citação
JOURNAL OF CLINICAL MICROBIOLOGY, v.57, n.1, article ID UNSP e01282, 7p, 2019
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Cryptococcus neoformans and Cryptococcus gattii are the main pathogenic species of invasive cryptococcosis among the Cryptococcus species. Taxonomic studies have shown that these two taxa have different genotypes or molecular types with biological and ecoepidemiological peculiarities. Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been proposed as an alternative method for labor-intensive methods for C. neoformans and C. gattii genotype differentiation. However, Vitek MS, one of the commercial MALDI-TOF MS instruments, has not been yet been evaluated for this purpose. Thus, we constructed an in-house database with reference strains belonging to the different C. neoformans (VNI, VNII, VNIII, and VNIV) and C. gattii (VGI, VGII, VGIII, and VGIV) major molecular types by using the software Saramis Premium (bioMerieux, Marcy-l'Etoile, France). Then, this new database was evaluated for discrimination of the different genotypes. Our in-house database provided correct identification for all C. neoformans and C. gattii genotypes; however, due to the intergenotypic mass spectral similarities, a careful postanalytic evaluation is necessary to provide correct genotype identification.
Palavras-chave
Cryptococcus gattii, Cryptococcus neoformans, MALDI-TOF, VITEK MS, genotypic identification
Referências
  1. CHANG YC, 1994, MOL CELL BIOL, V14, P4912, DOI 10.1128/MCB.14.7.4912
  2. Chen SCA, 2014, CLIN MICROBIOL REV, V27, P980, DOI 10.1128/CMR.00126-13
  3. de Almeida JN, 2017, J CLIN MICROBIOL, V55, P2439, DOI 10.1128/JCM.00461-17
  4. Del Poeta M, 2012, MYCOPATHOLOGIA, V173, P303, DOI 10.1007/s11046-011-9473-z
  5. Espinel-Ingroff A, 2012, ANTIMICROB AGENTS CH, V56, P5898, DOI 10.1128/AAC.01115-12
  6. Firacative C, 2012, PLOS ONE, V7, DOI 10.1371/journal.pone.0037566
  7. Grenfell RC, 2016, FRONT MICROBIOL, V7, DOI 10.3389/fmicb.2016.00940
  8. Hagen F, 2011, MYCOSES, V54, P78
  9. Hagen F, 2017, MSPHERE, V2, DOI 10.1128/mSphere.00238-17
  10. Hagen F, 2015, FUNGAL GENET BIOL, V78, P16, DOI 10.1016/j.fgb.2015.02.009
  11. Hibbett DS, 2007, MYCOL RES, V111, P509, DOI 10.1016/j.mycres.2007.03.004
  12. Hittinger CT, 2015, CURR OPIN GENET DEV, V35, P100, DOI 10.1016/j.gde.2015.10.008
  13. Kidd SE, 2004, P NATL ACAD SCI USA, V101, P17258, DOI 10.1073/pnas.0402981101
  14. Lacaz CS, 2002, TRATADO MICOLOGIA ME
  15. Leyer C, 2017, J CLIN MICROBIOL, V55, P2045, DOI [10.1128/jcm.00006-17, 10.1128/JCM.00006-17]
  16. Meyer W, 2003, EMERG INFECT DIS, V9, P189
  17. Normand AC, 2013, BMC MICROBIOL, V13, DOI 10.1186/1471-2180-13-76
  18. Pappalardo Mara C.S.M., 2003, Rev. Inst. Med. trop. S. Paulo, V45, P299, DOI 10.1590/S0036-46652003000600001
  19. Posteraro B, 2012, J CLIN MICROBIOL, V50, P2472, DOI 10.1128/JCM.00737-12
  20. Rychert J, 2013, J CLIN MICROBIOL, V51, P2225, DOI 10.1128/JCM.00682-13
  21. Severo CB, 2009, PAEDIATR RESPIR REV, V10, P166, DOI 10.1016/j.prrv.2009.06.009
  22. Trilles L, 2008, MEM I OSWALDO CRUZ, V103, P455, DOI 10.1590/S0074-02762008000500008
  23. Welker M, 2011, PROTEOMICS, V11, P3143, DOI 10.1002/pmic.201100049
  24. Zhou LR, 2017, INFECT DRUG RESIST, V10, P499, DOI 10.2147/IDR.S148121