HDL proteome remodeling associates with COVID-19 severity

Carregando...
Imagem de Miniatura
Citações na Scopus
23
Tipo de produção
article
Data de publicação
2021
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCIENCE INC
Autores
SOUZA JUNIOR, Douglas Ricardo
SILVA, Amanda Ribeiro Martins
ROSA-FERNANDES, Livia
REIS, Lorenna Rocha
ALEXANDRIA, Gabrielly
BHOSALE, Santosh D.
Citação
JOURNAL OF CLINICAL LIPIDOLOGY, v.15, n.6, p.796-804, 2021
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Besides the well-accepted role in lipid metabolism, high-density lipoprotein (HDL) also seems to participate in host immune response against infectious diseases. Objective : We used a quantitative proteomic approach to test the hypothesis that alterations in HDL proteome associate with severity of Coronavirus disease 2019 (COVID-19). Methods: Based on clinical criteria, subjects (n = 41) diagnosed with COVID-19 were divided into two groups: a group of subjects presenting mild symptoms and a second group displaying severe symptoms and requiring hospitalization. Using a proteomic approach, we quantified the levels of 29 proteins in HDL particles derived from these subjects. Results: We showed that the levels of serum amyloid A 1 and 2 (SAA1 and SAA2, respectively), pulmonary surfactant-associated protein B (SFTPB), apolipoprotein F (APOF), and inter-alpha-trypsin inhibitor heavy chain H4 (ITIH4) were increased by more than 50% in hospitalized patients, independently of sex, HDL-C or triglycerides when comparing with subjects presenting only mild symptoms. Altered HDL proteins were able to classify COVID-19 subjects according to the severity of the disease (error rate 4.9%). Moreover, apolipoprotein M (APOM) in HDL was inversely associated with odds of death due to COVID-19 complications (odds ratio [OR] per 1-SD increase in APOM was 0.27, with 95% confidence interval [CI] of 0.07 to 0.72, P = 0.007). Conclusion: Our results point to a profound inflammatory remodeling of HDL proteome tracking with severity of COVID-19 infection. They also raise the possibility that HDL particles could play an important role in infectious diseases.
Palavras-chave
Quantitative proteomics, Infection, HDL, COVID-19
Referências
  1. Banfi C, 2016, INT J CARDIOL, V221, P456, DOI 10.1016/j.ijcard.2016.07.003
  2. Begue F, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-81638-1
  3. Birner-Gruenberger R, 2014, PROG LIPID RES, V56, P36, DOI 10.1016/j.plipres.2014.07.003
  4. Brodin P, 2021, NAT MED, V27, P28, DOI 10.1038/s41591-020-01202-8
  5. Carr SA, 2014, MOL CELL PROTEOMICS, V13, P907, DOI 10.1074/mcp.M113.036095
  6. Cartier A, 2019, SCIENCE, V366, P323, DOI 10.1126/science.aar5551
  7. Chien JY, 2005, CRIT CARE MED, V33, P1688, DOI 10.1097/01.CCM.0000171183.79525.6B
  8. Dickinson A, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0233974
  9. Doyle IR, 1997, AM J RESP CRIT CARE, V156, P1217, DOI 10.1164/ajrccm.156.4.9603061
  10. Dupont A, 2021, ARTERIOSCL THROM VAS, V41, P1760, DOI 10.1161/ATVBAHA.120.315595
  11. Fan JL, 2020, METABOLISM, V107, DOI 10.1016/j.metabol.2020.154243
  12. Fan YW, 2020, INT J BIOCHEM CELL B, V126, DOI 10.1016/j.biocel.2020.105819
  13. Frej C, 2017, ARTERIOSCL THROM VAS, V37, P1194, DOI 10.1161/ATVBAHA.117.309275
  14. Galvani S, 2015, SCI SIGNAL, V8, DOI 10.1126/scisignal.aaa2581
  15. Gebhard C, 2020, BIOL SEX DIFFER, V11, DOI 10.1186/s13293-020-00304-9
  16. Gordon SM, 2013, MOL CELL PROTEOMICS, V12, P3123, DOI 10.1074/mcp.M113.028134
  17. Gordon SM, 2013, DIABETES, V62, P2958, DOI 10.2337/db12-1753
  18. Han CY, 2016, J CLIN INVEST, V126, P796, DOI 10.1172/JCI86401
  19. Heinecke JW, 2020, ARTERIOSCL THROM VAS, V40, P5, DOI 10.1161/ATVBAHA.119.313651
  20. Holzer M, 2012, J LIPID RES, V53, P1618, DOI 10.1194/jlr.M027367
  21. Hu XZ, 2020, CLIN CHIM ACTA, V510, P105, DOI 10.1016/j.cca.2020.07.015
  22. Jin YF, 2020, SIGNAL TRANSDUCT TAR, V5, DOI 10.1038/s41392-020-00454-7
  23. Kaysen GA, 2018, J LIPID RES, V59, P1519, DOI [10.1194/jlr.P084277, 10.1194/jlr.p084277]
  24. Lagor WR, 2014, ATHEROSCLEROSIS, V233, P234, DOI 10.1016/j.atherosclerosis.2013.12.043
  25. Lekkou A, 2014, J CRIT CARE, V29, P723, DOI 10.1016/j.jcrc.2014.04.018
  26. Li H, 2020, J INFECTION, V80, P646, DOI 10.1016/j.jinf.2020.03.035
  27. Liu Y, 2020, CURR OPIN LIPIDOL, V31, P194, DOI 10.1097/MOL.0000000000000688
  28. Madsen CM, 2018, EUR HEART J, V39, P1181, DOI 10.1093/eurheartj/ehx665
  29. Masana L, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-86747-5
  30. Melchior JT, 2017, J LIPID RES, V58, P1374, DOI 10.1194/jlr.M075382
  31. Pestka S, 2004, IMMUNOL REV, V202, P8, DOI 10.1111/j.0105-2896.2004.00204.x
  32. Pirillo A, 2015, HANDB EXP PHARMACOL, V224, P483, DOI 10.1007/978-3-319-09665-0_15
  33. Ronsein GE, 2016, MOL CELL PROTEOMICS, V15, P1083, DOI 10.1074/mcp.M115.054528
  34. Ronsein GE, 2015, J PROTEOMICS, V113, P388, DOI 10.1016/j.jprot.2014.10.017
  35. Ruiz M, 2017, ARTERIOSCL THROM VAS, V37, P118, DOI 10.1161/ATVBAHA.116.308435
  36. Schuchardt M, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-019-39846-3
  37. Shah AS, 2013, J LIPID RES, V54, P2575, DOI 10.1194/jlr.R035725
  38. Silva ARM, 2020, J PROTEOME RES, V19, P248, DOI 10.1021/acs.jproteome.9b00511
  39. Singh SA, 2021, JCI INSIGHT, V6, DOI 10.1172/jci.insight.143526
  40. Tall AR, 2015, NAT REV IMMUNOL, V15, P104, DOI 10.1038/nri3793
  41. Tanaka S, 2020, PLOS ONE, V15, DOI 10.1371/journal.pone.0239573
  42. Tolle M, 2012, CARDIOVASC RES, V94, P154, DOI 10.1093/cvr/cvs089
  43. Trieb M, 2020, J HEPATOL, V73, P113, DOI 10.1016/j.jhep.2020.01.026
  44. Trinder M, 2021, CIRCULATION, V143, P921, DOI 10.1161/CIRCULATIONAHA.120.048568
  45. Trinder M, 2020, ARTERIOSCL THROM VAS, V40, P267, DOI 10.1161/ATVBAHA.119.313381
  46. Vaisar T, 2015, J LIPID RES, V56, P1519, DOI 10.1194/jlr.M059089
  47. Vidova V, 2017, ANAL CHIM ACTA, V964, P7, DOI 10.1016/j.aca.2017.01.059
  48. Wang D, 2020, BMC INFECT DIS, V20, DOI 10.1186/s12879-020-05242-w
  49. Watanabe J, 2012, ARTHRITIS RHEUM-US, V64, P1828, DOI 10.1002/art.34363
  50. Weichhart T, 2012, J AM SOC NEPHROL, V23, P934, DOI 10.1681/ASN.2011070668
  51. Wiersinga WJ, 2020, JAMA-J AM MED ASSOC, V324, P782, DOI 10.1001/jama.2020.12839
  52. Zewinger S, 2015, EUR HEART J, V36, P3007, DOI 10.1093/eurheartj/ehv352