Precision medicine: The microbiome and metabolome

Carregando...
Imagem de Miniatura
Citações na Scopus
4
Tipo de produção
bookPart
Data de publicação
2019
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Citação
Faintuch, J.; Faintuch, J. J.. Precision medicine: The microbiome and metabolome. In: . MICROBIOME AND METABOLOME IN DIAGNOSIS, THERAPY, AND OTHER STRATEGIC APPLICATIONS: ELSEVIER, 2019. p.435-449.
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The microbiome gap, between just data accumulation and theoretical speculations from one side and clinical benefits to the patient from the other, is being rapidly filled. The microbiome is a crucial facet of the individual response to inflammation, cancer, metabolic and degenerative diseases, immunological conditions, neuropsychiatric pathology, diet, xenobiotic processing, surgical interventions, and even environmental stress. With the determination of key microorganisms, enzymes, metabolites, and pathways, advances are rapidly accumulating. Multilayer diagnostic and therapeutical algorithms, bedside microbiomics and metabolomics, new-generation probiotics and postbiotics, phage therapy, and patient-specific fecal transplantation are the foundations of the new era. It is not a distant vision anymore. Many applications are real and ready for clinical use. © 2019 Elsevier Inc. All rights reserved.
Palavras-chave
Lipidome, Metabolome, Microbiome, Molecular pathology, Personalized medicine, Precision medicine, Proteome
Referências
  1. Stranger, B.E., Brigham, L.E., Hasz, R., Hunter, M., Johns, C., Johnson, M., Kopen, G., Montgomery, S.B., Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease (2017) Nat Genet, 49, pp. 1664-1670
  2. Kashyap, P.C., Chia, N., Nelson, H., Segal, E., Elinav, E., Microbiome at the frontier of personalized medicine (2017) Mayo Clin Proc, 92 (12), pp. 1855-1864. , December
  3. Peters, J.H., Genetic factors in relation to drugs (1968) Annu Rev Pharmacol, 8, pp. 427-452
  4. Kalow, W., Pharmacogenetics and pharmacogenomics: Origin, status, and the hope for personalized medicine (2006) Pharmacogenomics J, 6, pp. 162-165
  5. Thomson, W., Tait, P.G., (1882) Mathematical and physical papers, , Cambridge University Press UK
  6. Dietel, M., Jöhrens, K., Laffert, M.V., Hummel, M., Bläker, H., Pfitzner, B.M., Lehmann, A., Anagnostopoulos, I.A., 2015 update on predictive molecular pathology and its role in targeted cancer therapy: A review focussing on clinical relevance (2015) Cancer Gene Ther, 22, pp. 417-430
  7. Beger, R.D., Dunn, W., Schmidt, M.A., Gross, S.S., Kirwan, J.A., Cascante, M., Brennan, L., Kaddurah-Daouk, R., Metabolomics enables precision medicine: “a white paper, community perspective” (2016) Metabolomics, 12, p. 149
  8. Boursier, J., Mueller, O., Barret, M., Machado, M., Fizanne, L., Araujo-Perez, F., Guy, C.D., Diehl, A.M., The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota (2016) Hepatology, 63, pp. 764-775
  9. Loomba, R., Seguritan, V., Li, W., Long, T., Klitgord, N., Bhatt, A., Dulai, P.S., Nelson, K.E., Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease (2017) Cell Metab, 25, pp. 1054-1062. , e5
  10. Nakahara, T., Hyogo, H., Ono, A., Nagaoki, Y., Kawaoka, T., Miki, D., Tsuge, M., Chayama, K., Involvement of Porphyromonas gingivalis in the progression of non-alcoholic fatty liver disease (2018) J Gastroenterol, 53, pp. 269-280
  11. Aleman, J.O., Eusebi, L.H., Ricciardiello, L., Patidar, K., Sanyal, A.J., Holt, P.R., Mechanisms of obesity-induced gastrointestinal neoplasia (2014) Gastroenterology, 146, pp. 357-373
  12. Puri, P., Liangpunsakul, S., Christensen, J.E., Shah, V.H., Kamath, P.S., Gores, G.J., Walker, S., Sanyal, A.J., The circulating microbiome signature and inferred functional metagenomics in alcoholic hepatitis (2018) Hepatology, 67, pp. 1284-1302. , October 30
  13. Jie, Z., Xia, H., Zhong, S.L., Feng, Q., Li, S., Liang, S., Zhong, H., Kristiansen, K., The gut microbiome in atherosclerotic cardiovascular disease (2017) Nat Commun, 8, p. 845
  14. Pasolli, E., Truong, D.T., Malik, F., Waldron, L., Segata, N., Machine learning meta-analysis of large metagenomic datasets: Tools and biological insights (2016) PLoS Comput Biol, 12, p. e1004977
  15. Bluemel, S., Williams, B., Knight, R., Schnabl, B., Precision medicine in alcoholic and nonalcoholic fatty liver disease via modulating the gut microbiota (2016) Am J Physiol Gastrointest Liver Physiol, 311, pp. G1018-G1036
  16. Jacobs, L.R., Relationship between dietary fiber and cancer: Metabolic, physiologic, and cellular mechanisms (1986) Proc Exp Biol Med, 183, pp. 299-310
  17. Burns, M.B., Lynch, J., Starr, T.K., Knights, D., Blekhman, R., Virulence genes are a signature of the microbiome in the colorectal tumor microenvironment (2015) Genome Med, 7, p. 55
  18. Flynn, K.J., Baxter, N.T., Schloss, P.D., Metabolic and community synergy of oral bacteria in colorectal cancer (2016) mSphere, 1 (3)
  19. Li, Y.Y., Ge, Q.X., Cao, J., Association of Fusobacterium nucleatum infection with colorectal cancer in Chinese patients (2016) World J Gastroenterol, 22, pp. 3227-3233
  20. Yu, T., Guo, F., Yu, Y., Sun, T., Ma, D., Han, J., Qian, Y., Fang, W., Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy (2017) Cell, 170, pp. 548-563. , e16
  21. Drewes, J.L., White, J.R., Dejea, C.M., Fathi, P., Iyadorai, T., Vadivelu, J., Roslani, A.C., Sears, C.L., High-resolution bacterial 16S rRNA gene profile meta-analysis and biofilm status reveal common colorectal cancer consortia (2017) NPJ Biofilms Microbiomes, 3, p. 34
  22. Hieken, T.J., Chen, J., Hoskin, T.L., Walther-Antonio, M., Johnson, S., Ramaker, S., Xiao, J., Degnim, A.C., The microbiome of aseptically collected human breast tissue in benign and malignant disease (2016) Sci Rep, 6, p. 30751
  23. Mani, S., Microbiota and breast cancer (2017) Prog Mol Biol Transl Sci, 151, pp. 217-229
  24. Carrière, J., Darfeuille-Michaud, A., Nguyen, H.T., Infectious etiopathogenesis of Crohn’s disease (2014) World J Gastroenterol, 20, pp. 12102-12117
  25. Haberman, Y., Tickle, T.L., Dexheimer, P.J., Kim, M.O., Tang, D., Karns, R., Baldassano, R.N., Denson, L.A., Pediatric Crohn disease patients exhibit specific ileal transcriptome and microbiome signature (2015) J Clin Invest, 125, p. 1363
  26. Mondot, S., Lepage, P., Seksik, P., Allez, M., Tréton, X., Bouhnik, Y., Colombel, J.F., Marteau, P., Structural robustness of the gut mucosal microbiota is associated with Crohn’s disease remission after surgery (2016) Gut, 65 (6), pp. 954-962. , June
  27. Bry, L., Falk, P.G., Midtveadt, T., Gordon, J.I., A model of host-microbial interactions in an open mammalian ecosystem (1996) Science, 273 (5280), pp. 1380-1383
  28. Bäckhed, F., Ding, H., Wang, T., Hooper, L.V., Koh, G.Y., Nagy, A., Semenkovich, C.F., Gordon, J.I., The gut microbiota as an environmental factor that regulates fat storage (2004) Proc Natl Acad Sci USA, 101, pp. 15718-15723
  29. Ley, R.E., Turnbaugh, P.J., Klein, S., Gordon, J.I., Microbial ecology: Human gut microbes associated with obesity (2006) Nature, 444, pp. 1022-1023
  30. Alang, N., Kelly, C.R., Acute weight gain after fecal microbiota transplantation (2015) Open Forum Infect Dis, 2. , ofv004
  31. Fischer, M., Kao, D., Kassam, Z., Smith, J., Louie, T., Sipe, B., Torbeck, M., Allegretti, J.R., Stool donor body mass index does not affect recipient weight after a single fecal microbiota transplantation for C. difficile infection (2018) Clin Gastroenterol Hepatol, 16, pp. 1353-1361. , December 12
  32. Damms-Machado, A., Mitra, S., Schollenberger, A.E., Kramer, K.M., Meile, T., Königsrainer, A., Huson, D.H., Bischoff, S.C., Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption (2015) BioMed Res Int, 2015. , 806248
  33. Finucane, M.M., Sharpton, T.J., Laurent, T.J., Pollard, K.S., A taxonomic signature of obesity in the microbiome? Getting to the guts of the matter (2014) PLoS One, 9, p. e84689
  34. Hwang, I., Park, Y.J., Kim, Y.R., Kim, Y.N., Ka, S., Lee, H.Y., Seong, J.K., Kim, J.B., Alteration of gut microbiota by vancomycin and bacitracin improves insulin resistance via glucagon-like peptide 1 in diet-induced obesity (2015) FASEB J, 29, pp. 2397-2411
  35. Thaisss, C.A., Itav, S., Rothschild, D., Meijer, M.T., Levy, M., Moresi, C., Dohnalova, L., Elinav, E., Persistent microbiome alterations modulate the rate of post- dieting weight regain (2016) Nature, 540, pp. 544-551
  36. Griffin, N.W., Ahern, P.P., Cheng, J., Heath, A.C., Ilkaveya, O., Newgard, C.B., Fontana, L., Gordon, J.I., Prior dietary practices and connections to a human gut microbial metacommunity alter responses to diet interventions (2017) Cell Host Microbe, 21, pp. 84-96
  37. Wilck, N., Matus, M.G., Kearney, S.M., Olesen, S.W., Forslund, K., Bartolomaeus, H., Haase, S., Müller, D.N., Salt-responsive gut commensal modulates TH17 axis and disease (2017) Nature, 551, pp. 585-589
  38. Kang, Y., Cai, Y., Gut microbiota and hypertension: From pathogenesis to new therapeutic strategies (2018) Clin Res Hepatol Gastroenterol, 42, pp. 110-117. , November 1
  39. Zubcevic, J., Baker, A., Martyniuk, C.J., Transcriptional networks in rodent models support a role for gut-brain communication in neurogenic hypertension: A review of the evidence (2017) Physiol Genom, 49, pp. 327-338
  40. Coit, P., Mumcu, G., Ture-Ozdemir, F., Unal, A.U., Alpar, U., Bostanci, N., Ergun, T., Sawalha, A.H., Sequencing of 16S rRNA reveals a distinct salivary microbiome signature in Behçet’s disease (2016) Clin Immunol, 169, pp. 28-35
  41. Consolandi, C., Turroni, S., Emmi, G., Severgnini, M., Fiori, J., Peano, C., Biagi, E., D’Elios, M.M., Behçet’s syndrome patients exhibit specific microbiome signature (2015) Autoimmun Rev, 14, pp. 269-276
  42. Shao, T., Shao, L., Li, H., Xie, Z., He, Z., Wen, C., Combined signature of the fecal microbiome and metabolome in patients with Gout (2017) Front Microbiol, 8, p. 268. , February 21
  43. Maeda, Y., Kurakawa, T., Umemoto, E., Motooka, D., Ito, Y., Gotoh, K., Hirota, K., Takeda, K., Dysbiosis contributes to arthritis development via activation of autoreactive T cells in the intestine (2016) Arthritis Rheumatol, 68, pp. 2646-2661
  44. Chen, J., Wright, K., Davis, J.M., Jeraldo, P., Marietta, E.V., Murray, J., Nelson, H., Taneja, V., An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis (2016) Genome Med, 8, p. 43
  45. Mertz, L., Omics tech, gut-on-a-chip, and bacterial engineering: New approaches for treating inflammatory bowel diseases (2016) IEEE Pulse, 7, pp. 9-12
  46. Kim, H.J., Lee, J., Choi, J.H., Bahinski, A., Ingber, D.E., Co-culture of living microbiome with microengineered human intestinal villi in a gut-on-a-chip microfluidic device (2016) J Vis Exp, (114)
  47. Lee, J., Choi, J.H., Kim, H.J., Human gut-on-a-chip technology: Will this revolutionize our understanding of IBD and future treatments? (2016) Exp Rev Gastroenterol Hepatol, 10, pp. 883-885
  48. Fu, Z.D., Cui, J.Y., Remote sensing between liver and intestine: Importance of microbial metabolites (2017) Curr Pharmacol Rep, 3, pp. 101-113
  49. Alonso, C., Fernández-Ramos, D., Varela-Rey, M., Martínez-Arranz, I., Navasa, N., Van Liempd, S.M., Lavín Trueba, J.L., Mato, J.M., Metabolomic identification of subtypes of nonalcoholic steatohepatitis (2017) Gastroenterology, 152, pp. 1449-1461. , e7
  50. Han, J., Dzierlenga, A.L., Lu, Z., Billheimer, D.D., Torabzadeh, E., Lake, A.D., Li, H., Cherrington, N.J., Metabolomic profiling distinction of human nonalcoholic fatty liver disease progression from a common rat model (2017) Obesity, 25, pp. 1069-1076
  51. Perry, R.J., Peng, L., Barry, N.A., Cline, G.W., Zhang, D., Cardone, R.L., Petersen, K.F., Shulman, G.I., Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome (2016) Nature, 534, pp. 213-217
  52. Troisi, J., Pierri, L., Landolfi, A., Marciano, F., Bisogno, A., Belmonte, F., Palladino, C., Vajro, P., Urinary metabolomics in pediatric obesity and NAFLD identifies metabolic pathways/metabolites related to dietary habits and gut-liver Axis perturbations (2017) Nutrients, 9. , pii: E485
  53. Priyadarshini, M., Wicksteed, B., Schiltz, G.E., Gilchrist, A., Layden, B.T., SCFA receptors in pancreatic β cells: Novel diabetes targets? (2016) Trends Endocrinol Metab, 27, pp. 653-664
  54. Metchnikoff, E., (1907) The prolongation of life: Optimistic studies, , William Heineman London
  55. Biagi, E., Franceschi, C., Rampelli, S., Severgnini, M., Ostan, R., Turroni, S., Consolandi, C., Candela, M., Gut microbiota and extreme longevity (2016) Curr Biol, 26, pp. 1480-1485
  56. Cheng, S., Larson, M.G., McCabe, E.L., Murabito, J.M., Rhee, E.P., Ho, J.E., Jacques, P.F., Wang, T.J., Distinct metabolomic signatures are associated with longevity in humans (2015) Nat Commun, 6, p. 6791
  57. Gruber, J., Kennedy, B.K., Microbiome and longevity: Gut microbes send signals to host mitochondria (2017) Cell, 169, pp. 1168-1169
  58. Ogrodzinski, M.P., Bernard, J.J., Lunt, S.Y., Deciphering metabolic rewiring in breast cancer subtypes (2017) Transl Res, 189, pp. 105-112
  59. Lerner, A., Aminov, R., Matthias, T., Transglutaminases in dysbiosis as potential environmental drivers of autoimmunity (2017) Front Microbiol, 8, p. 66. , January 24
  60. Richard, V., Conotte, R., Mayne, D., Colet, J.M., Does the 1H-NMR plasma metabolome reflect the host-tumor interactions in human breastcancer? (2017) Oncotarget, 8 (30), pp. 49915-49930. , July 25
  61. Chaput, N., Lepage, P., Coutzac, C., Soularue, E., Le Roux, K., Monot, C., Boselli, L., Carbonnel, F., Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab (2017) Ann Oncol, 28, pp. 1368-1379
  62. Matson, V., Fessler, J., Bao, R., Chongsuwat, T., Zha, Y., Alegre, M.L., Luke, J.J., Gajewski, T.F., The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients (2018) Science, 359, pp. 104-108
  63. Gopalakrishnan, V., Spencer, C.N., Nezi, L., Reuben, A., Andrews, M.C., Karpinets, T.V., Prieto, P.A., Wargo, J.A., Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients (2018) Science, 359 (6371), pp. 97-103. , November 2
  64. Routy, B., Le Chatelier, E., Derosa, L., Duong, C.P.M., Alou, M.T., Daillère, R., Fluckiger, A., Zitvogel, L., Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors (2018) Science, 359 (6371), pp. 91-97. , November 2
  65. Alexander, J.L., Wilson, I.D., Teare, J., Marchesi, J.R., Nicholson, J.K., Kinross, J.M., Gut microbiota modulation of chemotherapy efficacy and toxicity (2017) Nat Rev Gastroenterol Hepatol, 14, pp. 356-365
  66. Geller, L.T., Barzily-Rokni, M., Danino, T., Jonas, O.H., Shental, N., Nejman, D., Gavert, N., Straussman, R., Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine (2017) Science, 357, pp. 1156-1160
  67. Cason, C.A., Dolan, K.T., Sharma, G., Tao, M., Kulkarni, R., Helenowski, I.B., Doane, B.M., Ho, K.J., Plasma microbiome-modulated indole- and phenyl-derived metabolites associate with advanced atherosclerosis and postoperative outcomes (2017) J Vasc Surg, , December 13
  68. Guasch-Ferré, M., Hu, F.B., Ruiz-Canela, M., Bulló, M., Toledo, E., Wang, D.D., Corella, D., Salas-Salvadó, J., Plasma metabolites from choline pathway and risk of cardiovascular disease in the PREDIMED (prevention with Mediterranean diet) study (2017) J Am Heart Assoc, 6. , pii: e006524
  69. Dodd, D., Spitzer, M.H., Van Treuren, W., Merrill, B.D., Hryckowian, A.J., Higginbottom, S.K., Le, A., Sonnenburg, J.L., A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites (2017) Nature, 551 (7682), pp. 648-652
  70. Qiang, X., Liotta, A.S., Shiloach, J., Gutierrez, J.C., Wang, H., Ochani, M., Ochani, K., Roth, J., New melanocortin-like peptide of E. coli can suppress inflammation via the mammalian melanocortin-1 receptor (MC1R): Possible endocrine-like function for microbes of the gut (2017) NPJ Biofilms Microbiomes, 3, p. 31
  71. Smolinska, A., Bodelier, A.G., Dallinga, J.W., Masclee, A.A., Jonkers, D.M., van Schooten, F.J., Pierik, M.J., Investigation of faecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory bowel disease (2017) Aliment Pharmacol Ther, 45 (9), pp. 1244-1254. , May
  72. Cozzolino, R., De Giulio, B., Marena, P., Martignetti, A., Günther, K., Lauria, F., Russo, P., Siani, A., Urinary volatile organic compounds in overweight compared to normal-weight children: Results from the Italian I.Family cohort (2017) Sci Rep, 7, p. 15636
  73. Alkhouri, N., Eng, K., Cikach, F., Patel, N., Yan, C., Brindle, A., Rome, E., Dweik, R.A., Breathprints of childhood obesity: Changes in volatile organic compounds in obese children compared with lean controls (2015) Pediatr Obes, 10, pp. 23-29
  74. Raman, M., Ahmed, I., Gillevet, P.M., Probert, C.S., Ratcliffe, N.M., Smith, S., Greenwood, R., Rioux, K.P., Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease (2013) Clin Gastroenterol Hepatol, 11, pp. 868-875. , e1-3
  75. van Gaal, N., Lakenman, R., Covington, J., Savage, R., de Groot, E., Bomers, M., Benninga, M., de Meij, T., Faecal volatile organic compounds analysis using field asymmetric ion mobility spectrometry: Non-invasive diagnostics in paediatric inflammatory bowel disease (2017) J Breath Res, 12, p. 016006. , April 25
  76. Bhattacharyya, D., Kumar, P., Mohanty, S.K., Smith, Y.R., Misra, M., Detection of four distinct volatile indicators of colorectal cancer using functionalized Titania nanotubular arrays (2017) Sensors, 17 (8)
  77. Amal, H., Leja, M., Funka, K., Lasina, I., Skapars, R., Sivins, A., Ancans, G., Haick, H., Breath testing as potential colorectal cancer screening tool (2016) Int J Cancer, 138, pp. 229-236
  78. Tong, H., Wang, Y., Li, Y., Liu, S., Chi, C., Liu, D., Guo, L., Wang, C., Volatile organic metabolites identify patients with gastric carcinoma, gastric ulcer, or gastritis and control patients (2017) Cancer Cell Int, 17, p. 108. , November 21
  79. Arasaradnam, R., Wicaksono, A., O’Brien, H., Kocher, H.M., Covington, J.A., Crnogorac-Jurcevic, T., Non-invasive diagnosis of pancreatic cancer through detection of volatile organic compounds in urine (2018) Gastroenterology, 154, pp. 485-487. , November 9
  80. Huang, J., Mondul, A.M., Weinstein, S.J., Koutros, S., Derkach, A., Karoly, E., Sampson, J.N., Albanes, D., Serum metabolomic profiling of prostate cancer risk in the prostate, lung, colorectal, and ovarian cancer screening trial (2016) Br J Cancer, 115, pp. 1087-1095
  81. Oguma, T., Nagaoka, T., Kurahashi, M., Kobayashi, N., Yamamori, S., Tsuji, C., Takiguchi, H., Asano, K., Clinical contributions of exhaled volatile organic compounds in the diagnosis of lung cancer (2017) PLoS One, 12, p. e0174802
  82. Berkhout, D.J.C., Niemarkt, H.J., Benninga, M.A., Budding, A.E., van Kaam, A.H., Kramer, B.W., Pantophlet, C.M., de Meij, T.G.J., Development of severe bronchopulmonary dysplasia is associated with alterations in fecal volatile organic compounds (2018) Pediatr Res, 83, pp. 412-419. , November 22
  83. Devillier, P., Salvator, H., Naline, E., Couderc, L.J., Grassin-Delyle, S., Metabolomics in the diagnosis and pharmacotherapy of lung diseases (2017) Curr Pharm Des, 23, pp. 2050-2059
  84. Farrokhi, V., Nemati, R., Nichols, F.C., Yao, X., Anstadt, E., Fujiwara, M., Grady, J., Clark, R.B., Bacterial lipodipeptide, Lipid 654, is a microbiome-associated biomarker for multiple sclerosis (2013) Clin Transl Immunol, 2, p. e8
  85. Jenkins, B.J., Seyssel, K., Chiu, S., Pan, P.H., Lin, S.Y., Stanley, E., Ament, Z., Koulman, A., Odd chain fatty acids
  86. new insights of the relationship between the GutMicrobiota, dietary intake, biosynthesis and glucose intolerance (2017) Sci Rep, 7, p. 44845
  87. Erickson, A.R., Cantarel, B.L., Lamendella, R., Darzi, Y., Mongodin, E.F., Pan, C., Shah, M., Jansson, J.K., Integrated metagenomics/metaproteomics reveals human host-microbiota signatures of Crohn’s disease (2012) PLoS One, 7, p. e49138. , 10.1371
  88. Wilmes, P., Heintz-Buschart, A., Bond, P.L., A decade of metaproteomics: Where we stand and what the future holds (2015) Proteomics, 15, pp. 3409-3417
  89. Kolmeder, C.A., Ritari, J., Verdam, F.J., Muth, T., Keskitalo, S., Varjosalo, M., Fuentes, S., de Vos, W.M., Colonic metaproteomic signatures of active bacteria and the host in obesity (2015) Proteomics, 15, pp. 3544-3552
  90. Mayers, M.D., Moon, C., Stupp, G.S., Su, A.I., Wolan, D.W., Quantitative metaproteomics and activity-based probe enrichment reveals significant alterations in protein expression from a mouse model of inflammatory bowel disease (2017) J Proteome Res, 16, pp. 1014-1026
  91. Braun, J., Microgeographic proteomic networks of the human colonic Mucosa and their association with inflammatory bowel disease (2016) Cell Mol Gastroenterol Hepatol, 2, pp. 567-583
  92. Millis, N.F., Second international symposium on the biosafety results of genetically modified plants and microorganisms. May 1992, Goslar, FRG (1992) Australas Biotechnol, 2, pp. 237-239
  93. Syverton, J.T., Berry, G.P., The superinfection of the rabbit papilloma (shope) by extraneous viruses (1947) J Exp Med, 86, pp. 131-144
  94. Zheng, J.H., Nguyen, V.H., Jiang, S.N., Park, S.H., Tan, W., Hong, S.H., Shin, M.G., Min, J.J., Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin (2017) Sci Transl Med, 9 (376)
  95. Yoon, W., Park, Y.C., Kim, J., Chae, Y.S., Byeon, J.H., Min, S.H., Park, S., Kim, B.M., Application of genetically engineered Salmonella typhimurium for interferon-gamma-induced therapy against melanoma (2017) Eur J Cancer, 70, pp. 48-61
  96. Bourzac, K., Bender, E., Dolgin, E., Mullard, A., Savage, N., Gruber, K., Therapeutic developments: Masters of medicine (2017) Nature, 545, pp. S4-S9