Use of anodal transcranial direct current stimulation: Features, facets, and applications to incomplete spinal cord injury

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
bookPart
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
ABILIO, M. dos Santos
NASCIMENTO, D. A. do
BARBOSA, V. R. N.
YORK, B. S. de Albuquerque Cacique New
Citação
de Araújo, A. V. L.; dos Santos Abilio, M.; do Nascimento, D. A.; Barbosa, V. R. N.; de Albuquerque Cacique New York, B. S.. Use of anodal transcranial direct current stimulation: Features, facets, and applications to incomplete spinal cord injury. In: . CELLULAR, MOLECULAR, PHYSIOLOGICAL, AND BEHAVIORAL ASPECTS OF SPINAL CORD INJURY: ELSEVIER, 2022. p.35-49.
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Motor and sensory function impairments after an incomplete spinal cord injury generate a significant reduction in the functionality and quality of life, especially in a portion of working-age individuals. The development of research about effective interventions and adequate management should be a priority to rehabilitation postinjury. Anodal Transcranial Direct Current Stimulation, a low-intensity direct current, has been considered a noninvasive, painless, and safe stimulation. The anodal transcranial direct current stimulation effects appear to be related to modulation of the depolarization threshold in the neuronal membrane. Neuroplasticity in the neuronal circuit has been reported also. The potential to promote neuroplasticity by modulating the cortical excitability and motor descending pathways such as the corticospinal tract has an important place in rehabilitation. Therefore, stimuli to neuroplasticity to improve the effectiveness of rehabilitation after incomplete spinal cord injury should be investigated. Currently, anodal transcranial direct current stimulation effects on the cortical excitability, neuroplasticity, motor function, or functionality, and chronic neuropathic pain appear to reduce impairments after incomplete spinal cord injury. Studies should observe the short-, medium-, and long-term effects potentially related to the anodal transcranial direct current stimulation to define the therapy value to clinical practice. Besides, the cost-effectiveness and adherence level should be considered in future research. © 2022 Elsevier Inc. All rights reserved.
Palavras-chave
a-tDCS, Anodal transcranial direct current stimulation, Incomplete spinal cord injury, iSCI, Neuromodulation, Noninvasive stimulation, Spinal cord injury, tDCS, Transcranial direct current stimulation
Referências
  1. Antal, A., Alekseichuk, I., Bikson, M., Brockmöller, J., Brunoni, A.R., Chen, R., Paulus, W., Low intensity transcranial electric stimulation: Safety, ethical, legal regulatory, and application guidelines (2017) Clinical Neurophysiology, 128 (9), pp. 1774-1809
  2. Borrione, L., Moffa, A.H., Martin, D., Loo, C.K., Brunoni, A.R., Transcranial direct current stimulation in the acute depressive episode: A systematic review of current knowledge (2018) The Journal of ECT, 34 (3), pp. 153-163
  3. Broeder, S., Nackaerts, E., Heremans, E., Vervoort, G., Meesen, R., Verheyden, G., Nieuwboer, A., Transcranial direct current stimulation in Parkinson’s disease: Neurophysiological mechanisms and behavioral effects (2015) Neuroscience and Biobehavioral Reviews, 57, pp. 105-117
  4. Bunday, K.L., Perez, M.A., Motor recovery after spinal cord injury is enhanced by strengthening corticospinal synaptic transmission (2012) Current Biology, 22 (24), pp. 2355-2361
  5. Carmel, J.B., Berrol, L.J., Brus-Ramer, M., Martin, J.H., Chronic electrical stimulation of the intact corticospinal system after unilateral injury restores skilled locomotor control and promotes spinal axon outgrowth (2010) Journal of Neuroscience, 30 (32), pp. 10918-10926
  6. Carvalho, S., Leite, J., Jones, F., Morse, L.R., Zafonte, R., Fregni, F., Study adherence in a tDCS longitudinal clinical trial with people with spinal cord injury (2018) Spinal Cord, 56 (5), pp. 502-508
  7. Cortes, M., Medeiros, A.H., Gandhi, A., Lee, P., Krebs, H.I., Thickbroom, G., Edwards, D., Improved grasp function with transcranial direct current stimulation in chronic spinal cord injury (2017) NeuroRehabilitation, 41 (1), pp. 51-59
  8. Da Silva, F.T.G., Browne, R.A.V., Pinto, C.B., Saleh Velez, F.G., Do Egito, E.S.T., Do Rêgo, J.T.P., Fregni, F., Transcranial direct current stimulation in individuals with spinal cord injury: Assessment of autonomic nervous system activity (2017) Restorative Neurology and Neuroscience, 35 (2), pp. 159-169
  9. De Araújo, A.V.L., Ribeiro, F.P.G., Massetti, T., Potter-Baker, K.A., Cortes, M., Plow, E.B., de Mello Monteiro, C.B., Effectiveness of anodal transcranial direct current stimulation to improve muscle strength and motor functionality after incomplete spinal cord injury: A systematic review and meta-analysis (2020) Spinal Cord, 58 (6), pp. 635-646
  10. Elsner, B., Kugler, J., Pohl, M., Mehrholz, J., Transcranial direct current stimulation (tDCS) for improving aphasia in adults with aphasia after stroke (2019) Cochrane Database of Systematic Reviews, 2019 (5)
  11. Erb, W.H., Handbook of electro-therapeutics (1883), 27. , https://books.google.com.br/books/about/Handbook_of_Electro_Therapeutics.html?id=vf1DswEACAAJ&redir_esc=y, Retrieved from
  12. Fawcett, J.W., Curt, A., Steeves, J.D., Coleman, W.P., Tuszynski, M.H., Lammertse, D., Short, D., Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: Spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials (2007) Spinal Cord, 45 (3), pp. 190-205
  13. Fregni, F., El-Hagrassy, M.M., Pacheco-Barrios, K., Carvalho, S., Leite, J., Simis, M., Brunoni, A.R., Evidence-based guidelines and secondary meta-analysis for the use of transcranial direct current stimulation (tDCS) in neurological and psychiatric disorders (2020) The International Journal of Neuropsychopharmacology
  14. Horvath, J.C., Vogrin, S.J., Carter, O., Cook, M.J., Forte, J.D., Effects of a common transcranial direct current stimulation (tDCS) protocol on motor evoked potentials was found to be highly variable within individuals over 9 testing sessions (2016) Experimental Brain Research, 234 (9), pp. 2629-2642
  15. Jamil, A., Batsikadze, G., Kuo, H., Meesen, R.L.J., Dechent, P., Paulus, W., Nitsche, M.A., Current intensity- and polarity-specific online and aftereffects of transcranial direct current stimulation: An fMRI study (2020) Human Brain Mapping, 41 (6), pp. 1644-1666
  16. Khorasanizadeh, M.H., Yousefifard, M., Eskian, M., Lu, Y., Chalangari, M., Harrop, J.S., Rahimi-Movaghar, V., Neurological recovery following traumatic spinal cord injury: A systematic review and meta-analysis (2019) Journal of Neurosurgery: Spine, 30 (5), pp. 683-699
  17. Kim, Y., Missing data handling in chronic pain trials (2011) Journal of Biopharmaceutical Statistics, 21 (2), pp. 311-325
  18. Kumru, H., Murillo, N., Benito-Penalva, J., Tormos, J.M., Vidal, J., Transcranial direct current stimulation is not effective in the motor strength and gait recovery following motor incomplete spinal cord injury during Lokomat® gait training (2016) Neuroscience Letters, 620, pp. 143-147
  19. Kumru, H., Soler, D., Vidal, J., Navarro, X., Tormos, J.M., Pascual-Leone, A., Valls-Sole, J., The effects of transcranial direct current stimulation with visual illusion in neuropathic pain due to spinal cord injury: An evoked potentials and quantitative thermal testing study (2013) European Journal of Pain, 17 (1), pp. 55-66
  20. Lefaucheur, J.P., Antal, A., Ayache, S.S., Benninger, D.H., Brunelin, J., Cogiamanian, F., Paulus, W., Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS) (2017) Clinical Neurophysiology, 128 (1), pp. 56-92
  21. Li, S., Breathing-controlled Electrical Stimulation (BreEStim) for management of neuropathic pain and spasticity (2013) Journal of Visualized Experiments, 71
  22. Li, Y., Fan, J., Yang, J., He, C., Li, S., Effects of transcranial direct current stimulation on walking ability after stroke: A systematic review and meta-analysis (2018) Restorative Neurology and Neuroscience, 36 (1), pp. 59-71
  23. Li, S., Stampas, A., Frontera, J., Davis, M., Combined transcranial direct current stimulation and breathing-controlled electrical stimulation for management of neuropathic pain after spinal cord injury (2018) Journal of Rehabilitation Medicine, 50 (9), pp. 814-820
  24. Lippold, O.C., Redfearn, J.W., Mental changes resulting from the passage of small direct currents through the human brain (1964) The British Journal of Psychiatry: The Journal of Mental Science, 110, pp. 768-772
  25. Martin, J.H., Harnessing neural activity to promote repair of the damaged corticospinal system after spinal cord injury (2016) Neural Regeneration Research, 11 (9), pp. 1389-1391
  26. Matsushima, Y., Hachisuka, A., Itoh, H., Sugimoto, K., Saeki, S., Safety and feasibility of transcranial direct current stimulation for patients with post-polio syndrome (2019) Brain Stimulation, 12 (2), p. 431
  27. Mehta, S., Mcintyre, A., Guy, S., Teasell, R.W., Loh, E., Effectiveness of transcranial direct current stimulation for the management of neuropathic pain after spinal cord injury: A meta-analysis (2015) Spinal Cord, 53, pp. 780-785
  28. Murray, L.M., Edwards, D.J., Ruffini, G., Labar, D., Stampas, A., Pascual-Leone, A., Cortes, M., Intensity dependent effects of transcranial direct current stimulation on corticospinal excitability in chronic spinal cord injury (2015) Archives of Physical Medicine and Rehabilitation, 96 (4), pp. S114-S121
  29. Ngernyam, N., Jensen, M.P., Arayawichanon, P., Auvichayapat, N., Tiamkao, S., Janjarasjitt, S., Auvichayapat, P., The effects of transcranial direct current stimulation in patients with neuropathic pain from spinal cord injury (2015) Clinical Neurophysiology, 126 (2), pp. 382-390
  30. Nitsche, M.A., Paulus, W., Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation (2000) Journal of Physiology, 527 (3), pp. 633-639
  31. Podda, M.V., Cocco, S., Mastrodonato, A., Fusco, S., Leone, L., Barbati, S.A., Grassi, C., Anodal transcranial direct current stimulation boosts synaptic plasticity and memory in mice via epigenetic regulation of Bdnf expression (2016) Scientific Reports, 6 (1), pp. 1-19
  32. Potter-Baker, K.A., Transcranial direct current stimulation (tDCS) paired with massed practice training to promote adaptive plasticity and motor recovery in chronic incomplete tetraplegia: A pilot study (2017) Journal of Spinal Cord Medicine, 41 (5), pp. 503-517
  33. Potter-Baker, K.A., Variability of motor evoked potentials in stroke explained by corticospinal pathway integrity (2018) Brain Stimulation, 11 (4)
  34. Raithatha, R., Carrico, C., Powell, E.S., Westgate, P.M., Chelette, K.C., Lee, K., Sawaki, L., Non-invasive brain stimulation and robot-assisted gait training after incomplete spinal cord injury: A randomized pilot study (2016) NeuroRehabilitation, 38 (1), pp. 15-25
  35. Renga, V., Electricity, neurology, and noninvasive brain stimulation: Looking back, looking ahead (2020) Neurology Research International
  36. Rich, T.L., Gillick, B.T., Electrode placement in transcranial direct current stimulation—How reliable is the determination of C3/C4? (2019) Brain Sciences, 9 (3)
  37. Salmon, E., Carrico, C., Nichols, L., Reddy, L., Salles, S., Sawaki, L., Transcranial direct current stimulation to enhance motor function in spinal cord injury: Pilot data (2014), 2014, pp. 1-6. , 2014 IEEE 16th international conference on E-health networking, applications and services, Healthcom
  38. Sarmiento, C.I., San-Juan, D., Prasath, V.B.S., Letter to the Editor: Brief history of transcranial direct current stimulation (tDCS): From electric fishes to microcontrollers (2016) Psychological Medicine, 46, pp. 3259-3261
  39. Serra-Añó, P., Montesinos, L.L., Morales, J., López-Bueno, L., Gomis, M., García-Massó, X., González, L.M., Heart rate variability in individuals with thoracic spinal cord injury (2015) Spinal Cord, 53 (1), pp. 59-63
  40. Soler, M.D., Kumru, H., Pelayo, R., Vidal, J., Tormos, J.M., Fregni, F., Pascual-Leone, A., Effectiveness of transcranial direct current stimulation and visual illusion on neuropathic pain in spinal cord injury (2010) Brain, 133 (9), pp. 2565-2577
  41. Soler, D., Moriña, D., Kumru, H., Vidal, J., Navarro, X., Transcranial direct current stimulation and visual illusion effect according to sensory phenotypes in patients with spinal cord injury and neuropathic pain (2020) The Journal of Pain
  42. Thibaut, A., Carvalho, S., Morse, L.R., Zafonte, R., Fregni, F., Delayed pain decrease following M1 tDCS in spinal cord injury: A randomized controlled clinical trial (2017) Neuroscience Letters, 658, pp. 19-26
  43. Treede, R.D., Jensen, T.S., Campbell, J.N., Cruccu, G., Dostrovsky, J.O., Griffin, J.W., Serra, J., Neuropathic pain: Redefinition and a grading system for clinical and research purposes (2008) Neurology, 70 (18), pp. 1630-1635
  44. Truong, D.Q., Bikson, M., Physics of transcranial direct current stimulation devices and their history (2018) The Journal of ECT, 34 (3), pp. 137-143
  45. Williams, R., Murray, A., Prevalence of depression after spinal cord injury: A meta-analysis (2015) Archives of Physical Medicine and Rehabilitation, 96 (1), pp. 133-140
  46. Yamaguchi, T., Fujiwara, T., Tsai, Y.A., Tang, S.C., Kawakami, M., Mizuno, K., Liu, M., The effects of anodal transcranial direct current stimulation and patterned electrical stimulation on spinal inhibitory interneurons and motor function in patients with spinal cord injury (2016) Experimental Brain Research, 234 (6), pp. 1469-1478
  47. Yoon, E.J., Kim, Y.K., Kim, H.R., Kim, S.E., Lee, Y., Shin, H.I., Transcranial direct current stimulation to lessen neuropathic pain after spinal cord injury: A mechanistic PET study (2014) Neurorehabilitation and Neural Repair, 28 (3), pp. 250-259
  48. Yozbatiran, N., Keser, Z., Davis, M., Stampas, A., O’Malley, M.K., Cooper-Hay, C., Francisco, G.E., Transcranial direct current stimulation (tDCS) of the primary motor cortex and robot-assisted arm training in chronic incomplete cervical spinal cord injury: A proof of concept sham-randomized clinical study (2016) NeuroRehabilitation, 39 (3), pp. 401-411
  49. Yozbatiran, N., Keser, Z., Hasan, K., Stampas, A., Korupolu, R., Kim, S., Francisco, G.E., White matter changes in corticospinal tract associated with improvement in arm and hand functions in incomplete cervical spinal cord injury: Pilot case series (2017) Spinal Cord Series And Cases, 3 (1), pp. 1-5
  50. Yu, B., Qiu, H., Li, J., Zhong, C., Li, J., Noninvasive brain stimulation does not improve neuropathic pain in individuals with spinal cord injury: Evidence from a meta-analysis of 11 randomized controlled trials (2020) American Journal of Physical Medicine and Rehabilitation, 99 (9), pp. 811-820
  51. Kashiwagi, F.T., El Dib, R., Gomaa, H., Gawish, N., Suzumura, E.A., Da Silva, T.R., Bazan, R., Noninvasive brain stimulations for unilateral spatial neglect after stroke: A systematic review and meta-analysis of randomized and nonrandomized controlled trials (2018) Neural Plasticity, 2018