Additional improvement in regional myocardial ischemia after intracardiac injection of bone marrow cells during CABG surgery

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Citação
FRONTIERS IN CARDIOVASCULAR MEDICINE, v.10, article ID 1040188, 8p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Post-procedure residual ischemia is associated with worse prognosis in patients with coronary artery diasease (CAD).Objective: We evaluated whether autologous bone marrow-derived cells (BMC) contribute to additional reduction in regional stress-induced myocardial ischemia (SIMI) in patients undergoing incomplete coronary artery bypass graft surgery (CABG).Methods: In a double-blind, randomized, placebo-controlled trial, we enrolled 143 patients (82% men, 58 & PLUSMN; 11 years) with stable CAD and not candidates for complete CABG. They received 100 million BMC (n = 77) or placebo (n = 66) injected into ischemic non-revascularized segments during CABG. The primary outcome was improvement on SIMI quantified as the area at risk in injected segments assessed by cardiovascular magnetic resonance (CMR) 1, 6, and 12 months after CABG.Results: The reduction in global SIMI after CABG was comparable (p = 0.491) in both groups indicating sustained beneficial effects of the surgical procedure over 12 month period. In contrast, we observed additional improvement in regional SIMI in BMC treated group (p = 0.047). Baseline regional SIMI values were comparable [18.5 (16.2-21.0) vs. 18.5 (16.5-20.7)] and reached the lowest values at 1 month [9.74 (8.25; 11.49) vs. 12.69 (10.84; 14.85)] for BMC and placebo groups, respectively. The ischemia's improvement from baseline represented a 50% difference in regional SIMI in favor of the BMC transplanted group at 30 days. We found no differences in clinical and LVEF% between groups during the 12 month follow-up period. The 1 month rate of major adverse cerebral and cardiovascular events (MACCE) (p = 0.34) and all-cause mortality (p = 0.08) did not differ between groups 1 month post intervention.Conclusion: We provided evidence that BMC leads to additional reduction in regional SIMI in chronic ischemic patients when injected in segments not subjected to direct surgical revascularization. This adjuvant therapy deserves further assessment in patients with advanced CAD especially in those with microcirculation dysfunction.
Palavras-chave
myocardial ischemia, coronary artery disease, bone marrow cells, coronary artery bypass graft surgery (CABG), cardiovascular magnetic resonance, stress induced myocardial ischemia
Referências
  1. Assmus B, 2010, CIRC-HEART FAIL, V3, P89, DOI 10.1161/CIRCHEARTFAILURE.108.843243
  2. Assuncao-Jr AN, 2022, JACC-CARDIOVASC IMAG, V15, P812, DOI 10.1016/j.jcmg.2021.12.011
  3. Bao L, 2017, J CARD FAIL, V23, P403, DOI 10.1016/j.cardfail.2017.03.002
  4. D'Agostino RS, 2018, ANN THORAC SURG, V105, P15, DOI 10.1016/j.athoracsur.2017.10.035
  5. Danoviz ME, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0012077
  6. Dariolli R, 2017, PLOS ONE, V12, DOI 10.1371/journal.pone.0176412
  7. de Almeida Oliveira Nathalia C, 2022, Clin Sci (Lond), V136, P1281, DOI 10.1042/CS20220216
  8. Erbs S, 2007, CIRCULATION, V116, P366, DOI 10.1161/CIRCULATIONAHA.106.671545
  9. Garcia S, 2013, J AM COLL CARDIOL, V62, P1421, DOI 10.1016/j.jacc.2013.05.033
  10. Gowdak LHW, 2008, CLINICS, V63, P207, DOI 10.1590/S1807-59322008000200009
  11. Gyongyosi M, 2018, CIRC RES, V123, P301, DOI 10.1161/CIRCRESAHA.117.311302
  12. Gyongyosi M, 2015, CIRC RES, V116, P1346, DOI 10.1161/CIRCRESAHA.116.304346
  13. Head SJ, 2014, EUR HEART J, V35, P2821, DOI 10.1093/eurheartj/ehu213
  14. Li SH, 2009, J THORAC CARDIOV SUR, V137, P1225, DOI 10.1016/j.jtcvs.2008.11.001
  15. Mabotuwana NS, 2022, STEM CELL REV REP, V18, P2606, DOI 10.1007/s12015-022-10429-6
  16. McCulloch C., GEN LINEAR MIXED MOD
  17. MELENDEZ JC, 1993, JAMA-J AM MED ASSOC, V270, P745, DOI 10.1001/jama.270.6.745
  18. Nakamuta JS, 2009, PLOS ONE, V4, DOI 10.1371/journal.pone.0006005
  19. O'Brien K, 2020, NAT REV MOL CELL BIO, V21, P585, DOI 10.1038/s41580-020-0251-y
  20. Parisi AF, 1997, J AM COLL CARDIOL, V30, P1256, DOI 10.1016/S0735-1097(97)00293-3
  21. Patel AR, 2021, J AM COLL CARDIOL, V78, P1655, DOI 10.1016/j.jacc.2021.08.022
  22. Pettersson A, 2000, LAB INVEST, V80, P99, DOI 10.1038/labinvest.3780013
  23. Pezel T, 2021, J CARDIOVASC MAGN R, V23, DOI 10.1186/s12968-021-00721-8
  24. Pinheiro-de-Sousa I, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-05404-7
  25. Qin SL, 2015, CORONARY ARTERY DIS, V26, P170, DOI 10.1097/MCA.0000000000000193
  26. Sdringola S, 2013, JACC-CARDIOVASC IMAG, V6, P735, DOI 10.1016/j.jcmg.2012.07.019
  27. Shafei AE, 2018, J CELL BIOCHEM, V119, P5274, DOI 10.1002/jcb.26637
  28. Shaw LJ, 2008, CIRCULATION, V117, P1283, DOI 10.1161/CIRCULATIONAHA.107.743963
  29. Sinha A, 2021, EUR HEART J, V42, P4431, DOI 10.1093/eurheartj/ehab653
  30. Tura BR, 2007, TRIALS, V8, DOI 10.1186/1745-6215-8-2
  31. van den Brand MJBM, 2002, J AM COLL CARDIOL, V39, P559, DOI 10.1016/S0735-1097(01)01785-5
  32. Vieira RD, 2012, CIRCULATION, V126, pS158, DOI 10.1161/CIRCULATIONAHA.111.084236
  33. Waksman Ron, 2003, Cardiovasc Radiat Med, V4, P164, DOI 10.1016/S1522-1865(03)00163-X
  34. Wang XQ, 2021, INT J CARDIOL, V344, P13, DOI 10.1016/j.ijcard.2021.09.017
  35. Gowdak LHW, 2011, J CARDIOVASC TRANSL, V4, P106, DOI 10.1007/s12265-010-9234-2