Identification of a second genetic alteration in patients with SHOX deficiency individuals: a potential explanation for phenotype variability

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
OXFORD UNIV PRESS
Citação
EUROPEAN JOURNAL OF ENDOCRINOLOGY, v.189, n.3, p.387-395, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective Our study aimed to assess the impact of genetic modifiers on the significant variation in phenotype that is observed in individuals with SHOX deficiency, which is the most prevalent monogenic cause of short stature.Design and methods We performed a genetic analysis in 98 individuals from 48 families with SHOX deficiency with a target panel designed to capture the entire SHOX genomic region and 114 other genes that modulate growth and/or SHOX action. We prioritized rare potentially deleterious variants.Results We did not identify potential deleterious variants in the promoter or intronic regions of the SHOX genomic locus. In contrast, we found eight heterozygous variants in 11 individuals from nine families in genes with a potential role as genetic modifiers. In addition to a previously described likely pathogenic (LP) variant in CYP26C1 observed in two families, we identified LP variants in PTHLH and ACAN, and variants of uncertain significance in NPR2, RUNX2, and TP53 in more affected individuals from families with SHOX deficiency. Families with a SHOX alteration restricted to the regulatory region had a higher prevalence of a second likely pathogenic variant (27%) than families with an alteration compromising the SHOX coding region (2.9%, P = .04).Conclusion In conclusion, variants in genes related to the growth plate have a potential role as genetic modifiers of the phenotype in individuals with SHOX deficiency. In individuals with SHOX alterations restricted to the regulatory region, a second alteration could be critical to determine the penetrance and expression of the phenotype.
Palavras-chave
SHOX deficiency, genetic modifiers, phenotype variability, short stature, genetic background
Referências
  1. Aspberg A, 2012, J HISTOCHEM CYTOCHEM, V60, P987, DOI 10.1369/0022155412464376
  2. Aza-Carmona M, 2011, HUM MOL GENET, V20, P1547, DOI 10.1093/hmg/ddr032
  3. Belin V, 1998, NAT GENET, V19, P67, DOI 10.1038/ng0198-67
  4. Benito-Sanz S, 2012, J MED GENET, V49, P442, DOI 10.1136/jmedgenet-2011-100678
  5. Binder G, 2000, J CLIN ENDOCR METAB, V85, P245, DOI 10.1210/jc.85.1.245
  6. Binder G, 2004, J CLIN ENDOCR METAB, V89, P4403, DOI 10.1210/jc.2004-0591
  7. Binder G, 2003, J CLIN ENDOCR METAB, V88, P4891, DOI 10.1210/jc.2003-030136
  8. Blum WF, 2007, J CLIN ENDOCR METAB, V92, P219, DOI 10.1210/jc.2006-1409
  9. del Pino M, 2019, J PEDIATR GENET, V8, P123, DOI 10.1055/s-0039-1691788
  10. Ellison JW, 1997, HUM MOL GENET, V6, P1341, DOI 10.1093/hmg/6.8.1341
  11. Enomoto H, 2000, J BIOL CHEM, V275, P8695, DOI 10.1074/jbc.275.12.8695
  12. Freire BL, 2019, J CLIN ENDOCR METAB, V104, P2023, DOI 10.1210/jc.2018-01971
  13. Fukami M, 2006, AM J HUM GENET, V78, P167, DOI 10.1086/499254
  14. Funari MFA, 2019, CLIN GENET, V96, P261, DOI 10.1111/cge.13587
  15. Gerver WJM., 2001, Paediatric Morphometrics: A Reference Manual
  16. Gleghorn L, 2005, AM J HUM GENET, V77, P484, DOI 10.1086/444401
  17. Hachiya R, 2007, J CLIN ENDOCR METAB, V92, P4009, DOI 10.1210/jc.2007-1101
  18. Hattori T, 2010, DEVELOPMENT, V137, P901, DOI 10.1242/dev.045203
  19. Hisado-Oliva A, 2015, J CLIN ENDOCR METAB, V100, pE1133, DOI 10.1210/jc.2015-1612
  20. Ioannidis NM, 2016, AM J HUM GENET, V99, P877, DOI 10.1016/j.ajhg.2016.08.016
  21. Jaruga A, 2016, CLIN GENET, V90, P393, DOI 10.1111/cge.12812
  22. Jorge AAL, 2007, CLIN ENDOCRINOL, V66, P130, DOI 10.1111/j.1365-2265.2006.02698.x
  23. Kant SG, 2013, PEERJ, V1, DOI 10.7717/peerj.35
  24. Karczewski KJ, 2020, NATURE, V581, P434, DOI 10.1038/s41586-020-2308-7
  25. Kichaev G, 2019, AM J HUM GENET, V104, P65, DOI 10.1016/j.ajhg.2018.11.008
  26. Klopocki E, 2010, AM J HUM GENET, V86, P434, DOI 10.1016/j.ajhg.2010.01.023
  27. Kronenberg HM, 2006, ANN NY ACAD SCI, V1068, P1, DOI 10.1196/annals.1346.002
  28. Kuczmarski RJ., 2002, VITAL HLTH STAT
  29. Lerario AM, 2020, CLINICS, V75, DOI 10.6061/clinics/2020/e1913
  30. Leri A., 1929, Bull Mem Soc Med HopParis, V35, P1491
  31. Li J, 2012, BIOINFORMATICS, V28, P1307, DOI 10.1093/bioinformatics/bts146
  32. Malaquias AC, 2013, HORM RES PAEDIAT, V80, P449, DOI 10.1159/000355411
  33. Marchini A, 2004, J BIOL CHEM, V279, P37103, DOI 10.1074/jbc.M307006200
  34. Marchini A, 2007, HUM MOL GENET, V16, P3081, DOI 10.1093/hmg/ddm266
  35. Marchini A, 2016, ENDOCR REV, V37, P417, DOI 10.1210/er.2016-1036
  36. Montalbano A, 2016, EMBO MOL MED, V8, P1455, DOI 10.15252/emmm.201606623
  37. Naslavsky MS, 2017, HUM MUTAT, V38, P751, DOI 10.1002/humu.23220
  38. Quintos JB, 2015, J PEDIATR ENDOCR MET, V28, P927, DOI 10.1515/jpem-2014-0450
  39. Rao E, 1997, NAT GENET, V16, P54, DOI 10.1038/ng0597-54
  40. Rappold G, 2007, J MED GENET, V44, P306, DOI 10.1136/jmg.2006.046581
  41. Richards S, 2015, GENET MED, V17, P405, DOI 10.1038/gim.2015.30
  42. Rosilio M, 2012, J CLIN ENDOCR METAB, V97, pE1257, DOI 10.1210/jc.2011-3460
  43. Ross JL, 2001, J CLIN ENDOCR METAB, V86, P5674, DOI 10.1210/jc.86.12.5674
  44. Schulz S, 2005, PEPTIDES, V26, P1024, DOI 10.1016/j.peptides.2004.08.027
  45. Szklarczyk D, 2021, NUCLEIC ACIDS RES, V49, pD605, DOI 10.1093/nar/gkaa1074
  46. USHER R, 1969, J PEDIATR-US, V74, P901, DOI 10.1016/S0022-3476(69)80224-6
  47. Vasques GA, 2013, J CLIN ENDOCR METAB, V98, pE1636, DOI 10.1210/jc.2013-2142