The role of IFN-gamma production during retroviral infections: an important cytokine involved in chronic inflammation and pathogenesis

Carregando...
Imagem de Miniatura
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
INST MEDICINA TROPICAL SAO PAULO
Citação
REVISTA DO INSTITUTO DE MEDICINA TROPICAL DE SAO PAULO, v.64, article ID e64, 9p, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Interferon-gamma (IFN-gamma) plays a crucial role in viral infections by preventing viral replication and in the promotion of innate and adaptive immune responses. However, IFN-gamma can exert distinct effects in different persistent viral infections. The long-term overproduction of IFN-gamma in retroviral infections, such as the human immunodeficiency virus (HIV), human T-lymphotropic virus type 1 (HTLV-1), and human endogenous retroviruses (HERVs), resulting in inflammation, may cause neuronal damage. This review is provocative about the role of IFN-gamma during persistent retroviral infections and its relationship with the causation of some neurological disorders that are important for public health.
Palavras-chave
Retroviruses, HIV, HTLV-1, HERVs, Interferon-gamma, Immune regulation
Referências
  1. Antony JM, 2007, J IMMUNOL, V179, P1210, DOI 10.4049/jimmunol.179.2.1210
  2. Araujo A, 2021, NEUROL-CLIN PRACT, V11, P49, DOI 10.1212/CPJ.0000000000000832
  3. Araujo AQC, 2015, CURR INFECT DIS REP, V17, DOI 10.1007/s11908-014-0459-0
  4. Bhat RK, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0097984
  5. Bidkhori HR, 2020, J NEUROVIROL, V26, P338, DOI 10.1007/s13365-020-00832-5
  6. Bourke NM, 2018, CELL MOL LIFE SCI, V75, P775, DOI 10.1007/s00018-017-2652-4
  7. Brites C, 2021, BRAZ J INFECT DIS, V25, DOI 10.1016/j.bjid.2021.101594
  8. Burke JD, 2019, SEMIN IMMUNOL, V43, DOI 10.1016/j.smim.2019.05.002
  9. Canadas I, 2018, NAT MED, V24, P1143, DOI 10.1038/s41591-018-0116-5
  10. Cassol E, 2013, J NEUROIMMUNE PHARM, V8, P1087, DOI 10.1007/s11481-013-9512-2
  11. CLANET M, 1989, BIOMED PHARMACOTHER, V43, P355, DOI 10.1016/0753-3322(89)90061-9
  12. Di Curzio D, 2020, CELLS-BASEL, V9, DOI 10.3390/cells9071584
  13. Dorries R, 2001, CURR TOP MICROBIOL, V253, P219
  14. Douville RN, 2010, CYTOKINE, V52, P108, DOI 10.1016/j.cyto.2010.04.010
  15. Enose-Akahata Y, 2019, RETROVIROLOGY, V16, DOI 10.1186/s12977-019-0499-5
  16. Frucht DM, 2001, TRENDS IMMUNOL, V22, P556, DOI 10.1016/S1471-4906(01)02005-1
  17. Futsch N, 2018, VIRUSES-BASEL, V10, DOI 10.3390/v10120691
  18. Gascon MR, 2021, REV BRAS NEUROL, V57, P6
  19. Ge Y, 2018, CYTOKINE GROWTH F R, V43, P38, DOI 10.1016/j.cytogfr.2018.07.001
  20. Giunta B, 2006, BRAIN RES, V1123, P216, DOI 10.1016/j.brainres.2006.09.057
  21. Grandi N, 2018, FRONT MICROBIOL, V9, DOI 10.3389/fmicb.2018.00462
  22. Haziot ME, 2019, PLOS NEGLECT TROP D, V13, DOI 10.1371/journal.pntd.0006967
  23. Jones RB, 2013, J NEGAT RESULTS BIOM, V12, DOI 10.1186/1477-5751-12-3
  24. Kak Gunjan, 2018, BioMolecular Concepts, V9, P64, DOI 10.1515/bmc-2018-0007
  25. Kitze B, 2002, CURR TOP MICROBIOL, V265, P197
  26. Kury P, 2018, TRENDS MOL MED, V24, P379, DOI 10.1016/j.molmed.2018.02.007
  27. Kuhn L, 2001, PEDIATR RES, V50, P412, DOI 10.1203/00006450-200109000-00018
  28. Laurent X, 2014, J MED CHEM, V57, P5489, DOI 10.1021/jm4010863
  29. Liu H, 2020, IMMUNOLOGY, V160, P269, DOI 10.1111/imm.13181
  30. Manghera M, 2016, J VIROL, V90, P9338, DOI 10.1128/JVI.01503-16
  31. Marras F, 2017, J VIROL, V91, DOI 10.1128/JVI.00647-17
  32. Marroqui L, 2021, INT REV CEL MOL BIO, V359, P1, DOI 10.1016/bs.ircmb.2021.02.011
  33. Martin F, 2014, EXPERT REV CLIN IMMU, V10, P1531, DOI 10.1586/1744666X.2014.966690
  34. Matsuura E, 2010, J NEUROIMMUNE PHARM, V5, P310, DOI 10.1007/s11481-010-9216-9
  35. Medstrand P, 1997, J GEN VIROL, V78, P1731, DOI 10.1099/0022-1317-78-7-1731
  36. Minosse S, 2021, J NEUROIMAGING, DOI 10.1111/jon.12861
  37. Montoya CJ, 2006, CLIN IMMUNOL, V120, P138, DOI 10.1016/j.clim.2006.02.008
  38. Oger J, 2007, J NEUROL SCI, V262, P100, DOI 10.1016/j.jns.2007.06.045
  39. Prates G, 2021, NEUROL-CLIN PRACT, V11, P134, DOI 10.1212/CPJ.0000000000000866
  40. Puccioni-Sohler M, 2007, NEUROLOGY, V68, P206, DOI 10.1212/01.wnl.0000251300.24540.c4
  41. Rho MB, 1995, BRAIN BEHAV IMMUN, V9, P366, DOI 10.1006/brbi.1995.1034
  42. Rihn SJ, 2017, J VIROL, V91, DOI 10.1128/JVI.02254-16
  43. Rocamonde B, 2021, PLOS NEGLECT TROP D, V15, DOI 10.1371/journal.pntd.0009940
  44. Roff SR, 2014, FRONT IMMUNOL, V4, DOI 10.3389/fimmu.2013.00498
  45. Ronnblom L, 2016, CLIN EXP RHEUMATOL, V34, pS21
  46. Samuel CE, 2001, CLIN MICROBIOL REV, V14, P778, DOI 10.1128/CMR.14.4.778-809.2001
  47. Sanders CM, 2008, EXP MOL PATHOL, V84, P31, DOI 10.1016/j.yexmp.2007.08.008
  48. Sanford R, 2018, JAMA NEUROL, V75, P72, DOI 10.1001/jamaneurol.2017.3036
  49. Sarkis S, 2019, RETROVIROLOGY, V16, DOI 10.1186/s12977-019-0502-1
  50. Sauce D, 2013, CURR OPIN HIV AIDS, V8, P125, DOI 10.1097/COH.0b013e32835d08a9
  51. SHIOZAWA S, 1992, ARTHRITIS RHEUM, V35, P417, DOI 10.1002/art.1780350410
  52. Stow JL, 2013, CYTOKINE GROWTH F R, V24, P227, DOI 10.1016/j.cytogfr.2013.04.001
  53. Taterra D, 2019, NEURORADIOLOGY, V61, P869, DOI 10.1007/s00234-019-02207-y
  54. Tattermusch S, 2012, TRENDS MICROBIOL, V20, P494, DOI 10.1016/j.tim.2012.07.004
  55. Uleri E, 2014, AIDS, V28, P2659, DOI 10.1097/QAD.0000000000000477
  56. Wang XL, 2018, FRONT PSYCHIATRY, V9, DOI 10.3389/fpsyt.2018.00422
  57. Watanabe D, 2019, BMC INFECT DIS, V19, DOI 10.1186/s12879-018-3643-2
  58. Weiss RA, 2016, APMIS, V124, P4, DOI 10.1111/apm.12476
  59. Zuo W, 2021, CLIN IMMUNOL, V227, DOI 10.1016/j.clim.2021.108727